Эксперимент с интерактивной физической моделью. Исследование интерактивных компьютерных моделей. Плюсы и минусы использования электронных средств

Исследование физических моделей Подготовила: Куклева Анастасия

Моделирование – средство изучения системы путём её замены более удобной для исследования системой (моделью), сохраняющей интересующие исследователя свойства. Моделирование – построение (или выбор) и изучение моделей с целью получения новых знаний об объектах. Модель – объект любой природы, который способен замещать изучаемый объект в интересующих исследователя свойствах (например, глобус – модель Земли). Описание объекта – совокупность сведений об исследуемой системе и условиях, при которых необходимо провести исследование.

Классификация (предложенная В.А. Вениковым) Логические модели Логические модели создаются на основе рассуждений. Любой человек, прежде чем совершить какое-то действие, строит логическую модель. Верность логической модели показывает время. Не всегда известные нам модели этого вида получили подтверждение. Достоинство логических моделей – присутствие во всех иных видах моделей. Физические модели Модели, физически подобные реальной системе. Главное отличие физических моделей – физическое подобие наиболее важных исследуемых свойств. Наиболее яркими примерами физических моделей служат детские игрушки. Иной пример - при проектировании автомобиля дизайнеры строят пластилиновую физическую модель будущего изделия. Достоинство этого вида моделей состоит в высочайшей степени наглядности результатов. Математические модели Математическая модель – строго формализованное на языке математики описание исследуемой системы. Преимущество – строго формализованная доказанность и обоснованность получаемых результатов. (например, система линейных уравнений – метод ее решения). Данный вид моделирования в настоящее время является определяющим в системных исследованиях. Имитационное (компьютерное) моделирование Имитационное моделирование – это численный эксперимент с математическими моделями элементов исследуемой системы, объединёнными на информационном уровне. Имитационные модели могут содержать не только математические модели элементов исследуемой системы, но и физические модели. (например, тренажер).

Исследование физических моделей. Движение под действием силы тяжести хорошо известны. Это и падение тела с некоторой высоты, и движение тела, брошенного под углом к горизонту, и т.д. Если в таких задачах не учитывать силу сопротивления воздуха, то все перечисленные виды движения описываются известными формулами. Но задачи, в которых сопротивление воздуха учитываются, не менее интересны.

Задача Движение парашютиста.

I этап. Постановка задачи ОПИСАНИЕ ЗАДАЧИ Парашютист при падении к земле испытывает действие силы тяжести и силы сопротивления воздуха. Экспериментально установлено, что сила сопротивления зависит от скорости движения: чем больше скорость, тем больше сила. При движении в воздухе эта сила пропорциональна квадрату скорости с некоторым коэффициентом сопротивления k, который зависит от конструкции парашюта и веса человека. Каково должно быть значение этого коэффициента, чтобы парашютист приземлился на землю со скоростью не более 8 м/с, не представляющей опасности для здоровья? Определите цели моделирования и проведите формализацию задачи.

II этап. Разработка модели ИНФОРМАЦИОННАЯ МОДЕЛЬ Составьте информационную модель самостоятельно. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ На рисунке указаны силы, действующие на парашютиста. Согласно второму закону Ньютона движение под действием сил можно записать равенством.

Проецируем это равенство на ось движения, подставим выражение для силы сопротивления воздуха Получим формулу для вычисления ускорения

Будем рассчитывать скорость и расстояние, которое пролетел парашютист через равные промежутки времени Δt. Формула для вычисления моментов времени имеет вид: ti+1=ti+Δt Будем также считать, что на каждом промежутке ускорение постоянно и равно аi. Формула для вычисления ускорения имеет вид: где Vi- скорость в начале промежутка (V0 - начальная скорость).

Скорость в конце промежутка (и, соответственно, в начале следующего) вычисляется по формуле равноускоренного движения Расстояние, которое пролетел парашютист, равно сумме расстояния, пройденного к началу очередного промежутка времени и расстояния, пройденного на этом промежутке.

КОМПЬЮТЕРНАЯ МОДЕЛЬ Для моделирования выберем среду электронной таблицы. В этой среде информационная и математическая модель объединяются в таблицу, которая содержит три области: исходные данные; промежуточные расчеты; результаты.

III этап. Компьютерный эксперимент

Формальная модель Для формализации модели используем известные из курса физики формулы равномерного и равноускоренного движения.

Спасибо за внимание!!!

Опыт использования компьютерных моделей на уроках физики

Александр Федорович Кавтрев , кандидат физ.-мат. наук, Соросовский учитель, заведующий лабораторией Центра Информационной Культуры г. Санкт-Петербурга

В последнее время можно часто слышать вопросы: "А нужен ли компьютер на уроках физики? Не вытеснят ли компьютерные имитации реальный эксперимент из учебного процесса?" Чаще всего такие вопросы задают учителя, не владеющие информационными технологиями и не очень понимающие, чем могут быть полезны эти технологии в преподавании.

Давайте попробуем ответить на вопрос: "Когда же оправдано использование компьютерных программ на уроках физики?" Мы считаем, что, прежде всего, в тех случаях, в которых возникает существенное преимущество по сравнению с традиционными формами обучения. Одним из таких случаев является использование компьютерных моделей в учебном процессе. Следует отметить, что под компьютерными моделями автор понимает компьютерные программы, которые позволяют имитировать физические явления, эксперименты или идеализированные ситуации, встречающиеся в задачах.

В чем же преимущество компьютерного моделирования по сравнению с натурным экспериментом? Прежде всего, компьютерное моделирование позволяет получать наглядные динамические иллюстрации физических экспериментов и явлений, воспроизводить их тонкие детали, которые часто ускользают при наблюдении реальных явлений и экспериментов. При использовании моделей компьютер предоставляет уникальную, не достижимую в реальном физическом эксперименте, возможность визуализации не реального явления природы, а его упрощённой модели. При этом можно поэтапно включать в рассмотрение дополнительные факторы, которые постепенно усложняют модель и приближают ее к реальному физическому явлению. Кроме того, компьютерное моделирование позволяет варьировать временной масштаб событий, а также моделировать ситуации, не реализуемые в физических экспериментах.

Работа учащихся с компьютерными моделями чрезвычайно полезна, так как компьютерные модели позволяют в широких пределах изменять начальные условия физических экспериментов, что позволяет им выполнять многочисленные виртуальные опыты. Такая интерактивность открывает перед учащимися огромные познавательные возможности, делая их не только наблюдателями, но и активными участниками проводимых экспериментов. Некоторые модели позволяют одновременно с ходом экспериментов наблюдать построение соответствующих графических зависимостей, что повышает их наглядность. Подобные модели представляют особую ценность, так как учащиеся обычно испытывают значительные трудности при построении и чтении графиков.

Разумеется, компьютерная лаборатория не может заменить настоящую физическую лабораторию. Тем не менее, выполнение компьютерных лабораторных работ требует определенных навыков, характерных и для реального эксперимента - выбор начальных условий, установка параметров опыта и т. д.

Большое число компьютерных моделей по всему школьному курсу физики содержится в мультимедийных курсах, разработанных компанией "Физикон ": "Физика в картинках", "Открытая физика 1.1", "Открытая физика 2.0", "Открытая астрономия 2.0" и "Открытая химия 2.0". Главной отличительной особенностью этих компьютерных курсов являются многочисленные компьютерные модели - уникальные и оригинальные разработки, которые высоко оценили пользователи во многих странах. (Заметим, что значительное число моделей расположено также на сайте "Открытый колледж" по адресу: http://www.college.ru/ ).

Компьютерные модели разработанные компанией "Физикон" легко вписываются в урок и позволяют учителю организовать новые, нетрадиционные виды учебной деятельности учащихся. Приведём в качестве примеров три вида такой деятельности:

  • 1. Урок решения задач с последующей компьютерной проверкой. Учитель предлагает учащимся для самостоятельного решения в классе или в качестве домашнего задания индивидуальные задачи, правильность решения которых они могут проверить, поставив компьютерные эксперименты. Самостоятельная проверка полученных результатов, при помощи компьютерного эксперимента, усиливает познавательный интерес учащихся, а также делает их работу творческой, а зачастую приближает её по характеру к научному исследованию. В результате многие учащиеся начинают придумывать свои задачи, решать их, а затем проверять правильность своих рассуждений, используя компьютерные модели. Учитель может сознательно побуждать учащихся к подобной деятельности, не опасаясь, что ему придётся решать ворох придуманных учащимися задач, на что обычно не хватает времени. Более того, составленные школьниками задачи можно использовать в классной работе или предложить остальным учащимся для самостоятельной проработки в виде домашнего задания.
  • 2. Урок - исследование. Учащимся предлагается самостоятельно провести небольшое исследование, используя компьютерную модель, и получить необходимые результаты. Тем более, что многие модели позволяют провести такое исследование буквально за считанные минуты. Конечно, учитель помогает учащимся на этапах планирования и проведения экспериментов.
  • 3. Урок - компьютерная лабораторная работа. Для проведения такого урока необходимо разработать соответствующие раздаточные материалы. Задания в бланках лабораторных работ следует расположить по мере возрастания их сложности. Вначале имеет смысл предложить простые задания ознакомительного характера и экспериментальные задачи, затем расчетные задачи и, наконец, задания творческого и исследовательского характера. При ответе на вопрос или при решении задачи учащийся может поставить необходимый компьютерный эксперимент и проверить свои соображения. Расчётные задачи рекомендуется вначале решить традиционным способом на бумаге, а затем поставить компьютерный эксперимент для проверки правильности полученного ответа. Отметим, что задания творческого и исследовательского характера существенно повышают заинтересованность учащихся в изучении физики и являются дополнительным мотивирующим фактором. По этой причине уроки последних двух типов приближаются к идеалу, так как ученики получают знания в процессе самостоятельной творческой работы, ибо знания необходимы им для получения конкретного, видимого на экране компьютера, результата. Учитель в этих случаях является лишь помощником в творческом процессе овладевания знаниями.

Основные этапы разработки и исследования моделей на компьютере

Использование компьютера для исследования информационных моделей различных объектов и процессов позволяет изучить их изменения в зависимости от значения тех или иных параметров. Процесс разработки моделей и их исследования на компьютере можно разделить на несколько основных этапов.

На первом этапе исследования объекта или процесса обычно строится описательная информационная модель. Такая модель выделяет существенные, с точки зрения целей проводимого исследования (целей моделирования), свойства объекта, а несущественными свойствами пренебрегает.

На втором этапе создается формализованная модель, т. е. описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и т. д. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

Однако далеко не всегда удается найти формулы, явно выражающие искомые величины через исходные данные. В таких случаях используются приближенные математические методы, позволяющие получать результаты с заданной точностью.

На третьем этапе необходимо формализованную информационную модель преобразовать в компьютерную модель, т. е. выразить ее на понятном для компьютера языке. Компьютерные модели разрабатывают преимущественно программисты, а пользователи могут проводить компьютерные эксперименты.

В настоящее время широкое распространение получили компьютерные интерактивные визуальные модели. В таких моделях исследователь может менять начальные условия и параметры протекания процессов и наблюдать изменения в поведении модели.

Контрольные вопросы

В каких случаях могут быть опущены отдельные этапы построения и исследования модели? Приведите примеры создания моделей в процессе обучения.

Исследование интерактивных компьютерных моделей

Далее мы рассмотрим ряд учебных интерактивных моделей, разработанных компанией ФИЗИКОН для образовательных курсов. Учебные модели компании ФИЗИКОН представлены на CD-дисках и в виде Интернет-проектов. Каталог интерактивных моделей содержит 342 модели по пяти предметам: физике (106 моделей), астрономии (57 моделей), математике (67 моделей), химии (61 модель) и биологии (51 модель). Часть моделей в Интернете на сайте http://www.college.ru интерактивны, а другие представлены только картинкой и описанием. Все модели вы найдете в соответствующих учебных курсах на CD-дисках.

2.6.1. Исследование физических моделей

Рассмотрим процесс построения и исследования модели на примере модели математического маятника, которая является идеализацией физического маятника.

Качественная описательная модель. Можно сформулировать следующие основные предположения:

подвешенное тело значительно меньше по размеру длины нити, на которой оно подвешено;

нить тонкая и нерастяжимая, масса которой пренебрежимо мала по сравнению с массой тела;

угол отклонения тела мал (значительно меньше 90°);

вязкое трение отсутствует (маятник колеблется в ва-

Формальная модель. Для формализации модели используем известные из курса физики формулы. Период Т колебаний математического маятника равен:

где I - длина нити, g - ускорение свободного падения.

Интерактивная компьютерная модель. Модель демонстрирует свободные колебания математического маятника. В полях можно изменять длину нити I, угол ф0 начального отклонения маятника, коэффициент вязкого трения b.

Открытая физика

2.3. Свободные колебания.

Модель 2.3. Математический маятник

Открытая физика

Часть 1 (ЦОР на CD) ИЗГ

Запуск интерактивной модели математического маятника производится щелчком по кнопке Старт.

С помощью анимации показывается движение тела и действующие силы, строятся графики зависимости от времени угловой координаты или скорости, диаграммы потенциальной и кинетической энергий (рис. 2.2).

Это можно увидеть при свободных колебаниях, а также при затухающих колебаниях при наличии вязкого трения.

Обратите внимание, что колебания математического маятника являются. гармоническими только при достаточно малых амплитудах

%рI ж2mfb ~ ж

Рис. 2.2. Интерактивная модель математического маятника

http://www.physics.ru

2.1. Практическое задание. Провести компьютерный эксперимент с интерактивной физической моделью, размещенной в Интернете.

2.6.2. Исследование астрономических моделей

Рассмотрим гелиоцентрическую модель Солнечной системы.

Качественная описательная модель. Гелиоцентрическая модель мира Коперника на естественном языке формулировалась следующим образом:

Земля вращается вокруг своей оси и Солнца;

все планеты вращаются вокруг Солнца.

Формальная модель. Ньютон формализовал гелиоцентрическую систему мира, открыв закон всемирного тяготения и законы механики и записав их в виде формул:

F = у. Wl_ F = т а.(2.2)

Интерактивная компьютерная модель (рис. 2.3). Трехмерная динамическая модель показывает вращение планет Солнечной системы. В центре модели изображено Солнце, вокруг него - планеты Солнечной системы.

4.1.2. Вращение планет Солнечной

системы. Модель 4.1.Солнечная система(ЦОР на CD) «Открытая астрономия»

В модели выдержаны реальные отношения орбит планет и их эксцентриситеты. Солнце находится в фокусе орбиты каждой планеты. Обратите внимание на то, что орбиты Нептуна и Плутона пересекаются. Изобразить в небольшом окне все планеты сразу достаточно сложно, поэтому предусмотрены режимы Меркурий...Марс и Юпитер...Л,лутон, а также режим Все планеты. Выбор нужного режима производится при помощи соответствующего переключателя.

Во время движения можно менять значение угла зрения в окне ввода. Получить представление о реальных эксцентриситетах орбит можно, выставив значение угла зрения 90°.

Можно изменить внешний вид модели, отключив отображение названий планет, их орбит или системы координат, показываемой в левом верхнем углу. Кнопка Старт запускает модель, Стоп - приостанавливает, а Сброс - возвращает в исходное состояние.

Рис. 2.3. Интерактивная модель гелиоцентрической системы

Г" Система координат С Юпитер...Плутон!■/ Названия планет С. Меркурий...Марс |55 угол зрения!«/ Орбиты планетВсе планеты

Задание для самостоятельного выполнения

http://www.college.ru 1ЩГ

Практическое задание. Провести компьютерный эксперимент с интерактивной астрономической моделью, размещенной в Интернете.

Исследование алгебраических моделей

Формальная модель. В алгебре формальные модели записываются с помощью уравнений, точное решение которых основывается на поиске равносильных преобразований алгебраических выражений, позволяющих выразить переменную величину с помощью формулы.

Точные решения существуют только для некоторых уравнений определенного вида (линейные, квадратные, тригонометрические и др.), поэтому для большинства уравнений приходится использовать методы приближенного решения с заданной точностью (графические или численные).

Например, нельзя найти корень уравнения sin(x) = 3*х - 2 путем равносильных алгебраических преобразований. Однако такие уравнения можно решать приближенно графическими и численными методами.

Построение графиков функций может использоваться для грубо приближенного решения уравнений. Для уравнений вида fi(x) = f2(x), где fi(x) и f2(x) - некоторые непрерывные функции, корень (или корни) этого уравнения являются точкой (или точками) пересечения графиков функций.

Графическое решение таких уравнений можно осуществить путем построения интерактивных компьютерных моделей.

Функции и графики. Открытая математика.

Модель 2.17.Функции и графики ЦЩГ*

Решение уравнений(ЦОР на CD)

Интерактивная компьютерная модель. Введите в верхнее поле ввода уравнение в виде fi(x) = f2(x), например, sin(x) = 3-х - 2.

Нажмите кнопку Решить. Подождите некоторое время. Будет построен график правой и левой частей уравнения, зелеными точками будут отмечены корни.

Чтобы ввести новое уравнение, нажмите кнопку Сброс. Если вы сделаете ошибку при вводе, в нижнем окне появится соответствующее сообщение.

Рис. 2.4. Интерактивная компьютерная модель графического решения уравнений

для самостоятельного выполнения

http://www.mathematics.ru Ш1Г

Практическое задание. Провести компьютерный эксперимент с интерактивной математической моделью, размещенной в Интернете.

Исследование геометрических моделей (планиметрия)

Формальная модель. Треугольник ABC называется прямоугольным, если один из его углов (например, угол В) прямой (т. е. равен 90°). Сторона треугольника, противолежащая прямому углу, называется гипотенузой; две другие стороны - катетами.

Теорема Пифагора гласит, что в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы: АВ2 + ВС2 = АС.

Интерактивная компьютерная модель (рис. 2.5). Интерактивная модель демонстрирует основные соотношения в прямоугольном треугольнике.

Прямоугольный треугольник. Открытая математика.

Модель 5.1. Теорема Пифагора

Планиметрия В51Г (ЦОР на CD)

При помощи мыши можно перемещать точку А (в вертикальном направлении) и точку С (в горизонтальном направлении). Показываются длины сторон прямоугольного треугольника, градусные меры углов.

Переключившись в демонстрационный режим при помощи кнопки со значком кинопроектора, можно просмотреть анимацию. Кнопка Старт запускает ее, кнопка Стоп - приостанавливает, а кнопка Сброс возвращает анимацию в исходное состояние.

Кнопка со значком руки переводит модель обратно в интерактивный режим.

Рис. 2.5. Интерактивная математическая модель теоремы Пифагора

Задание для самостоятельного выполнения

http://www.mathematics.ru |Й|Г

Практическое задание. Провести компьютерный эксперимент с интерактивной планиметрической моделью, размещенной в Интернете.

Исследование геометрических моделей (стереометрия)

Формальная модель. Призма, основанием которой является параллелограмм, называется параллелепипедом. Противоположные грани любого параллелепипеда равны и параллельны. Прямоугольным называется параллелепипед, все грани которого прямоугольники. Прямоугольный параллелепипед с равными ребрами называется кубом.

Три ребра, выходящие из одной вершины прямоугольного параллелепипеда, называются его измерениями. Квадрат

диагонали прямоугольного параллелепипеда равняется сумме квадратов его измерений:

2 2,12, 2 а = а + b + с

Объем прямоугольного параллелепипеда равен произведению его измерений:

Интерактивная компьютерная модель. Перетаскивая мышью точки, можно изменять измерения параллелепипеда. Понаблюдайте, как изменяется длина диагонали, площадь поверхности и объем параллелепипеда при изменении длин его сторон. Флажок Прямой превращает произвольный параллелепипед в прямоугольный, а флажок Куб превращает его в куб.

Параллелепипед.Открытая математика.

Модель 6.2.Стереометрия }