Презентация на тему генератор. Презентация на тему "устройство и принцип работы генератора". Общий вид генератора переменного тока с внутренними полюсами. Ротор является индуктором, а статор - якорем

Генератор электрического тока(старое
название альтернатор) является
электромеханическим устройством, которое
преобразует механическую энергию в
электрическую энергию переменного тока.
Большинство генераторов переменного тока
используют вращающееся магнитное поле.

История:

Системы производящие переменный ток были
известны в простых видах со времён открытия
магнитной индукции электрического тока. Ранние
машины были разработаны Майклом Фарадеем и
Ипполитом Пикси.
Фарадей разработал «вращающийся
треугольник», действие которого было
многополярным - каждый активный проводник
пропускался последовательно через область, где
магнитное поле было в противоположных
направлениях.
Первая публичная демонстрация наиболее
сильной «альтернаторной системы» имела место в
1886 году. Большой двухфазный генератор
переменного тока был построен британским
электриком Джеймсом Эдвардом Генри
Гордоном в 1882 году.
Лорд Кельвин и Себастьян Ферранти также
разработали ранний альтернатор, производивший
частоты между 100 и 300 герц.
В 1891 году Никола Тесла запатентовал
практический «высокочастотный» альтернатор
(который действовал на частоте около 15000 герц).
После 1891 года, были введены многофазные
альтернаторы.

Принцип действия генератора основан на
действии электромагнитной индукции - возникновении
электрического напряжения в обмотке статора, находящейся в
переменном магнитном поле. Оно создается с помощью
вращающегося электромагнита - ротора при прохождении по его
обмотке постоянного тока. Переменное напряжение преобразуется
в постоянное полупроводниковым выпрямителем.

Все двигатели постоянного тока состоят из ротора и статора, причем ротор-это подвижная часть двигателя, а статор нет.

Схема радиально-поршневого роторного насоса:
1 - ротор
2 - поршень
3 - статор
4 - цапфа
5 - полость нагнетания
6 - полость всасывания

Классификация генераторов по типу первичного двигателя:

Турбогенератор
Дизель-генератор
Гидрогенератор
Ветрогенератор

Турбогенератор

- устройство, состоящее
из синхронного генератора и паровой или газовой
турбины, выполняющей роль привода. Основная
функция в преобразовании в внутренней
энергии рабочего тела в электрическую, посредством
вращения паровой или газовой турбины.

Дизельная электростанция (дизель-генератор)

Дизельная электроста́нция (дизель-генераторная установка,
дизель-генератор) - стационарная или подвижная
энергетическая установка, оборудованная одним или
несколькими электрическими генераторами с приводом
от дизельного двигателя внутреннего сгорания.
Как правило, такие электростанции объединяют в
себе генератор переменного тока и двигатель внутреннего
сгорания, которые установлены на стальной раме, а также
систему контроля и управления установкой. Двигатель
внутреннего сгорания приводит в движение синхронный или
асинхронный электрический генератор. Соединение двигателя и
электрического генератора производится либо
напрямую фланцем, либо через демпферную муфту

Гидрогенератор

- устройство, состоящее из электрического
генератора и гидротурбины, выполняющей роль
механического привода, предназначен для выработки
электроэнергии на гидроэлектростанции.
Обычно генератор гидротурбинный представляет собой
синхронную явнополюсную электрическую
машину вертикального исполнения, приводимую во вращение
от гидротурбины, хотя существуют и генераторы
горизонтального исполнения (в том числе капсульные
гидрогенераторы).
Конструкция генератора в основном определяется
параметрами гидротурбины, которые в свою очередь зависят
от природных условий в районе строительства
гидроэлектростанции (напора воды и её расхода). В связи с
этим для каждой гидроэлектростанции обычно проектируется
новый генератор.

Ветрогенератор

(ветроэлектрическая установка или сокращенно
ВЭУ) - устройство для преобразования кинетической
энергии ветрового потока в механическую энергию
вращения ротора с последующим её преобразованием
в электрическую энергию.
Ветрогенераторы можно разделить на три категории:
промышленные, коммерческие и бытовые (для частного
использования).
Промышленные устанавливаются государством или крупными
энергетическими корпорациями. Как правило, их объединяют в
сети, в результате получается ветровая электростанция. Её
основное отличие от традиционных (тепловых, атомных) -
полное отсутствие как сырья, так и отходов. Единственное важное
требование для ВЭС - высокий среднегодовой уровень ветра.
Мощность современных ветрогенераторов достигает 8 МВт.

Применение генераторов в быту и на производстве

Электростанции переменного тока работают на дачах и в частных
домах в качестве автономного источника электроснабжения, в
составе оборудования в ремонтных и пуско-наладочных бригадах.
Сварочные электростанции на стройках намного удобнее, чем
стационарные сварочные аппараты, особенно на начальных этапах
стройки.
Сдать ремонт под ключ с автономными электрогенераторами
становится проще. Они экономят время и становятся незаменимыми в
полевых условиях, когда электроснабжение отсутствует. Монтаж и
изготовление металлоконструкций также становится проще, когда
поблизости нет источников электроснабжения. Собирать
металлоконструкции удобнее на месте, а не транспортировать готовую
конструкцию на место установки.
Бывают случаи, когда дублирование основного электроснабжения
жизненно важно. Для клиник и больниц с реанимационными и
хирургическими отделениями наличие автономной аварийной системы
электроснабжения очень важно. Ведь от этого зависят человеческие
жизни. Генераторы переменного тока нашли широкое применение в
быту и на производстве благодаря компактности, безотказности и
мобильности. Широкий спектр применения делает их универсальными
устройствами, способными производить ток не только для нужд
производства, но и в быту.

Ни для кого не станет удивительным тот факт, что в наши дни популярность, востребованность и спрос таких устройств, как электростанции и генераторы переменного тока, достаточно высоки. Это объясняется, прежде всего, тем, что современное генераторное оборудование имеет для нашего населения огромное значение. Помимо этого необходимо добавить и то, что генераторы переменного тока нашли свое широкое применение в самых различных сферах и областях. Промышленные генераторы могут быть установлены в таких местах, как поликлиники и детские сады, больницы и заведения общественного питания, морозильные склады и многие другие места, требующие непрерывной подачи электрического тока. Обратите свое внимание на то, что отсутствие электричества в больнице может привести непосредственно к гибели человека. Именно поэтому в подобных местах генераторы должны быть установлены обязательно. Также довольно распространенным является явление использования генераторов переменного тока и электростанций в местах проведения строительных работ. Это позволяет строителям использовать необходимое им оборудование даже на тех участках, где полностью отсутствует электрификация. Однако и этим дело не ограничилось. Электростанции и генераторные установки были усовершенствованы и дальше. В результате этого нам были предложены бытовые генераторы переменного тока, которые вполне удачно можно было устанавливать для электрификации коттеджей и загородных домов. Таким образом, мы можем сделать вывод о том, что современные генераторы переменного тока имеют довольно широкую область применения. Кроме того они способны решить большое количество важных проблем, связанных с некорректной работой электрической сети, либо ее отсутствием.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ГЕНЕРАТОРА Корпус (5) и передняя крышка генератора (2) служат опорами для подшипников (9 и 10), в которых вращается якорь (4). На обмотку возбуждения якоря напряжение от аккумулятора подается через щетки (7) и контактные кольца (11). Якорь приводится в движение посредством клинового ремня через шкив (1). При запуске двигателя, как только якорь начинает вращаться, создаваемое им электромагнитное поле индуцирует переменный электрический ток в обмотке статора (3). В выпрямительном блоке (6) этот ток становится постоянным. Далее ток через совмещенный с выпрямительным блоком регулятор напряжения поступает в электросеть автомобиля для питания системы зажигания, освещения и сигнализации, контрольно-измерительных приборов и др.

3 слайд

Описание слайда:

Общий вид автомобильного генератора переменного тока 1 и 19 – алюминиевые крышки; 2 – блок диодов выпрямителя; 3 –вентиль выпрямительного блока; 4 – винт крепления выпрямительного блока; 5 – контактные кольца; 6 и 18 – задний и передний шарикоподшипники; 7 – конденсатор; 8 – вал ротора; 9 и 10 – выводы; 11– вывод регулятора напряжения; 12 – регулятор напряжения; 13 – щетка; 14 – шпилька; 15 – шкив с вентилятором; 16 – полюсный наконечник ротора; 17 – дистанционная втулка; 20 – обмотка ротора; 21- статор; 22 – обмотка статора; 23 – полюсный наконечник ротора; 24 – буферная втулка; 25 – втулка; 26 – поджимная втулка

4 слайд

Описание слайда:

В основе работы генератора лежит эффект электромагнитной индукции. Современные автомобили используют трехфазные генераторы переменного тока. Генератор - самый активно нагруженный компонент электрики. Во время движения автомобиля частота оборотов вала генератора достигает 10-14 тысяч оборотов в минуту. Это самая большая скорость вращения среди всех узлов автомобиля, в 2-3 раза превышающая частоту оборотов двигателя. Срок службы у генератора примерно в два раза меньше, чем у двигателя: примерно 160 тыс.километров пробега. По своему конструктивному исполнению генераторные установки делят на - генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы компактной конструкции с двумя вентиляторами во внутренней полости генератора. Генераторы бывают двух видов: генератор переменного тока (используется на большинстве легковых автомобилей) генератор постоянного тока (используется на большинстве автомобилей, работающих в автохозяйствах) Генератор переменного тока состоит из двух основных частей: статора с неподвижной обмоткой, в которой индуцируется переменный ток, и ротора, создающего подвижное магнитное поле, а также крышек, приводного шкива с вентилятором и встроенного выпрямительного блока.

5 слайд

Описание слайда:

Статор генератора 1 - сердечник, 2 - обмотка, 3 - пазовый клин, 4 - паз, 5 - вывод для соединения с выпрямителем

6 слайд

Описание слайда:

Схема обмотки статора генератора. А - петлевая распределенная отличается тем, что ее секции (или полусекции) выполнены в виде катушек с лобовыми соединениями по обоим сторонам пакета статора напротив друг друга; Б - волновая сосредоточенна, напоминает волну, т. к. ее лобовые соединения между сторонами секции расположены поочередно то с одной, то с другой стороны пакета статора; В - волновая распределенная. секция разбивается на две полусекции, исходящие из одного паза, причем одна полусекция исходит влево, другая направо. 1 фаза, 2 фаза, 3 фаза

7 слайд

Описание слайда:

Ротор автомобильного генератора. Особенностью автомобильных генераторов является вид полюсной системы ротора (рис.5). Она содержит две полюсные половины с выступами - полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы - полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса. а - в сборе; б - полюсная система в разобранном виде; 1,3- полюсные половины; 2 - обмотка возбуждения; 4 - контактные кольца; 5 - вал

8 слайд

Описание слайда:

Щеточный узел - это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов - меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

9 слайд

Описание слайда:

Система охлаждения генераторов Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (рис. а) воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места - к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом (рис. б), закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. а - генераторы обычной конструкции; б - генераторы для повышенной температуры в подкапотном пространстве; в - генераторы компактной конструкции.

10 слайд

Описание слайда:

Привод генераторов Привод генераторов осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива генератора (отношение диаметров называют передаточным отношением), тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток. Привод клиновым ремнем не применяется для передаточных отношений больше 1,7-3. Прежде всего это связано с тем, что при малых диаметpax шкивов клиновой ремень усиленно изнашивается. На современных моделях, как правило, привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать более высокие передаточные отношения, то есть использовать высокооборотные генераторы. Натяжение поликлинового ремня осуществляется, как правило, натяжными роликами при неподвижном генераторе.

11 слайд

Описание слайда:

Крепление генератора Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная пружина генератора находятся на крышках. Если крепление осуществляется двумя лапами, то они расположены на обеих крышках, если лапа одна - она находится на передней крышке. В отверстии задней лапы (если крепежные лапы - две) обычно имеется дистанционная втулка, устраняющая зазор между кронштейном двигателя и посадочным местом лапы.

12 слайд

Описание слайда:

Регуляторы напряжения Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Все регуляторы напряжения имеют измерительные элементы, являющиеся датчиками напряжения, и исполнительные элементы, осуществляющие его регулирование. В вибрационных регуляторах измерительным и исполнительным элементом является электромагнитное реле. У контактно-транзисторных регуляторов электромагнитное реле находится в измерительной части, а электронные элементы - в исполнительной части. Эти два типа регуляторов в настоящее время полностью вытеснены электронными.

13 слайд

Описание слайда:

Основные неисправности генератора и способы их устранения Генератор не дает зарядного тока (амперметр показывает разрядный ток при номинальной частоте вращения коленчатого вала двигателя) Пробуксовка приводного ремня Натянуть ремень, убедившись в исправности подшипников Зависание щеток Очистить щеткодержатель, щетки от грязи, проверить усилие щеточных пружин Подгорание контактных колец Зачистить и при необходимости проточить контактные кольца Обрыв цепи возбуждения Устранить обрыв цепи Задевание ротора за полюса статора Проверить подшипники, места посадки. Поврежденные детали заменить Неисправность регулятора напряжения Заменить регулятор напряжения Обрыв в цепи "генератор-аккумулятор" Устранить обрыв Генератор дает зарядный ток, но не обеспечивает хорошего заряда аккумуляторной батареи Плохой контакт "массы" генератора с "массой" регулятора напряжения Проверить целостность провода, идущего на "массу", и надежность контакта Срабатывание реле защиты регулятора напряжения из-за замыкания в цепи возбуждения генератора на "массу" Найти место замыкания и устранить неисправность Износ щеток Заменить щетки новыми Зависание щеток Очистить щеткодержатель, щетки от грязи Загрязнение и замасливание контактных колец Протереть кольца тканью, смоченной бензином Неисправность регулятора напряжения Проверить и при необходимости заменить регулятор напряжения Витковое замыкание или обрыв цепи одной из фаз статорной обмотки Неисправность (пробой) диодов выпрямительного блока Разобрать генератор, проверить состояние статорной обмотки (отсутствие обрыва и замыкания). Статор с неисправной обмоткой заменить Слабое натяжение ремня Отрегулировать натяжение ремня Повышенная шумность генератора Износ или разрушение подшипников Заменить подшипники Ослабление гайки шкива генератора Подтянуть гайку Износ посадочного места подшипника Заменить крышку генератора Межвитковое замыкание обмотки статора ("вой" генератора) Заменить статор

1 слайд

Презентация На тему: «Генератор трехфазового тока» Муниципальное Нетиповое Общеобразовательное Учреждение «Гимназия №1 города Белово» Руководитель: Попова Ирина Александровна Выполнили: ученики 11«В» класса Пономарёв Кирилл Малахов Александр Глущенко Анатолий Белово 2011 МОЗГ 2.0

2 слайд

3 слайд

Цели: 1) понять принцип действия трехфазного генератора 2) выяснить преимущества трехфазных систем 3) рассмотреть соединения в трехфазных цепях 4) сравнить фазное(Uф) и линейное(Uл) напряжения 5) рассмотреть схемы,графики для изучения и закрепления знания темы. 6) проделать опыт, применив полученные знания 7) сделать практические выводы

4 слайд

История возникновения… Михаи л О сипович Доли во-Доброво льский - русский электротехник польского происхождения, один из создателей техники трёхфазного переменного тока, немецкий предприниматель. Творческая и инженерная деятельность М. О. Доливо-Добровольского была направлена на решение задач, с которыми неизбежно пришлось бы столкнуться при широком использовании электроэнергии. Работа в этом направлении, на основе полученного Николой Теслой трёхфазного тока, в необычайно короткий срок привела к разработке трёхфазной электрической системы и совершенной, в принципе, не изменившейся до настоящего времени конструкции асинхронного электродвигателя. Таким образом, были получены токи с разностью фаз 120 градусов, была найдена связанная трёхфазная система, отличительной особенностью которой являлось использование для передачи и распределения электроэнергии только трёх проводов.

5 слайд

Устройство генератора трехфазного тока Принцип действия генератора основан на явлении электромагнитной индукции - возникновении электрического напряжения в обмотке статора, находящейся в переменном магнитном поле. Оно создается с помощью вращающегося электромагнита - ротора при прохождении по его обмотке постоянного тока. Основные элементы: Индуктором в генераторе трехфазного тока служит электромагнит, обмотка которого питается постоянным током. Индуктором является ротор, якорь генератора – статором. В пазах статора расположены три независимые электрич. обмотки, сдвинутые в пространстве на 120гр. При вращении ротора с угл.скоростью возникает ЭДС индукции,изменяющ. по гармоническому закону с частотой ω Вследствие сдвига обмоток в пространстве фазы колебаний сдвинуты на 2п/3 и 4п/3.

6 слайд

7 слайд

Соединения в трехфазных цепях Фазное напряжение – напряжение между началом и концом каждой фазной обмотки генератора. Линейное напряжение – напряжение между началами любых двух фазных обмоток.

8 слайд

Опыт Три катушки с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с гальванометром. В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.

9 слайд

Преимущества трехфазных систем: 1) экономичность производства и передачи электроэнегии 2) возможность получения относительно простого кругового вращающ. магнитного поля 3) возможность получения в одной установки двуч эксплутационных напряжений: фазного и линейного 4) использование меньшего кол-ва проводов в производстве Вывод: Благодаря этим преимуществам, трёхфазные системы наиболее распространённые в современной электроэнергетике.

10 слайд

Список используемой литературы: Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.; Глазунов А.Т., Кабардин О.Ф., Малинин А.Н., Орлов В.А., Пинский А.А., С.И. Кабардина «Физика. 11 класс». – М.: Просвещение, 2009 г. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Слайд 2

Слайд 3

Генератор постоянного тока преобразует механическую энергию в электрическую. В зависимости от способов соединения обмоток возбуждения с якорем генераторы подразделяются на: генераторы независимого возбуждения; генераторы с самовозбуждением; генераторы параллельного возбуждения; генераторы последовательного возбуждения; генераторы смешанного возбуждения; Генераторы малой мощности иногда выполняются с постоянными магнитами. Свойства таких генераторов близки к свойствам генераторов с независимым возбуждением.

Слайд 4

Генераторы постоянного тока

Генераторы постоянного тока являются источниками постоянного тока, в которых осуществляется преобразование механической энергии в электрическую. Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства необходим или является предпочтительным постоянный ток (на предприятиях металлургической и электролизной промышленности, на транспорте, на судах и др.). Используются они и на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока. В последнее время в связи с развитием полупроводниковой техники для получения постоянного тока часто применяются выпрямительные установки, но несмотря на это генераторы постоянного тока продолжают находить широкое применение. Генераторы постоянного тока выпускаются на мощности от нескольких киловатт до 10 000 кВт.

Слайд 5

Генераторы постоянного тока представляют собой обычные индукционные генераторы, снабженные особым приспособлением - так называемым коллектором,- дающим возможность превратить переменное напряжение на зажимах (щетках) машины в постоянное. Рис. 329. Схема генератора постоянного тока: 1 - полукольца коллектора, 2 - вращающийся якорь (рамка), 3 - щетки для съема индукционного тока

Слайд 6

Принцип устройства коллектора ясен из рис. 329, на котором изображена схема простейшей модели генератора постоянного тока с коллектором. Эта модель отличается от рассмотренной выше модели генератора переменного тока (рис. 288) лишь тем, что здесь концы якоря (обмотки) соединены не с отдельными кольцами, а с двумя полукольцами 1, разделенными изолирующим материалом и надетыми на общий цилиндр, который вращается на одной оси с рамкой 2. К вращающимся полукольцам прижимаются пружинящие контакты (щетки) 3, с помощью которых индукционный ток отводится во внешнюю сеть. При каждом полуобороте рамки концы ее, припаянные к полукольцам, переходят с одной щетки на другую. Но направление индукционного тока в рамке, как было разъяснено в § 151, тоже меняется при каждом полуобороте рамки. Поэтому, если переключения в коллекторе происходят в те же моменты времени, когда меняется направление тока в рамке, то одна из щеток всегда будет являться положительным полюсом генератора, а другая - отрицательным, т. е. во внешней цепи будет идти ток, не меняющий своего направления. Можно сказать, что с помощью коллектора мы производим выпрямление переменного тока, индуцируемого в якоре машины.

Слайд 7

График напряжения на зажимах такого генератора, якорь которого имеет одну рамку, а коллектор состоит из двух полуколец, изображен на рис. 330. Как видим, в этом случае напряжение на зажимах генератора, хотя и является прямым, т. е. не меняет своего направления, но все время Рис. 330. Зависимость напряжения на зажимах генератора постоянного тока от временименяется от нуля до максимального значения. Такое напряжение и соответствующий ему ток часто называют прямым пульсирующим током. Нетрудно сообразить, что напряжение или ток проходят весь цикл своих изменений за время одного полупериода переменной э. д. с. в обмотках генератора. Иначе говоря, частота пульсаций вдвое больше частоты переменного тока.

Слайд 8

Чтобы сгладить эти пульсации и сделать напряжение не только прямым, но и постоянным, якорь генератора составляют из большого числа отдельных катушек, или секций, сдвинутых на определенный угол друг относительно друга, а коллектор составляют не из двух полуколец, а из соответствующего числа пластин, лежащих на поверхности цилиндра, вращающегося на общем валу с якорем. Концы каждой секции якоря припаиваются к соответствующей паре пластин, разделенных изолирующим материалом. Такой якорь называют якорем барабанного типа (рис. 331). На рис. 332 показан генератор постоянного тока в разобранном виде, а на рис. 333 - схема устройства такого генератора с четырьмя секциями якоря и двумя парами пластин на коллекторе. Общий вид генератора постоянного тока марки ПН показан на рис. 334. Генераторы этого типа изготовляются на мощности от 0,37 до 130 кВт и на напряжения 115, 115/160, 230/320 и 460 В при частоте вращения ротора от 970 до 2860 оборотов в минуту.

Слайд 9

Из рис. 332 и 333 мы видим, что, в отличие от генер4000аторов переменного тока, в генераторах постоянного тока вращающаяся часть машины - ее ротор - представляет собой якорь машины (барабанного типа), а индуктор помещен в неподвижной части машины - ее статоре. Статор (станина генератора) выполняется из литой стали или чугуна, и на внутренней его поверхности укрепляются выступы, на которые надеваются обмотки, создающие в машине магнитное Рис. 331. Якорь барабанного типа генератора постоянного тока: 1 - барабан, на котором расположены витки четырех обмоток, 2 - коллектор, состоящий из двух пар пластин

Слайд 10

Рис. 332. Генератор постоянного тока в разобранном виде: 1 - станина, 2 - якорь, 3 - подшипниковые щиты, 4 - щетки с щеткодержателями, укрепленные на траверзе, 5 - сердечник полюса

Слайд 11

поле (рис. 335, а). На рис. 333 показана только одна пара полюсов N и S; на практике обычно в статоре размещают несколько пар таких полюсов. Все их обмотки соединяют Рис. 333. Схема генератора постоянного тока с четырьмя секциями якоря и четырьмя пластинами на коллекторе

Слайд 12

последовательно, и концы выводят на зажимы m и n, через которые в них подается ток, создающий в машине магнитное поле. Рис. 334. Внешний вид генератора постоянного тока

Слайд 13

Так как выпрямление происходит лишь на коллекторе машины, а в каждой секции индуцируется переменный ток, то во избежание сильного нагревания токами Фуко\" сердечник якоря делают не сплошным, а набирают из отдельных стальных листов, на краю которых выштамповываются выемки для активных проводников якоря, а в центре - отверстие для вала со шпонкой (рис. 335, б). Эти листы изолируются друг от друга бумагой или лаком. Рис. 335. Детали генератора постоянного тока: а) полюсный сердечник с обмоткой возбуждения; б) стальной лист якоря с отверстием в центре

Слайд 14

168.1. Почему статор генератора переменного тока собирается из отдельных стальных листов, а статор генератора постоянного тока представляет собой массивную стальную или чугунную отливку?Схему соединения отдельных секций обмотки якоря с пластинами коллектора можно уяснить себе из рис. 333. Здесь круг с вырезами изображает задний торец железного сердечника, в пазах которого уложены длинные провода отдельных секций, параллельные оси цилиндра. Провода эти, обычно называемые в электротехнике активными, перенумерованы на рисунке цифрами 1-8. На задней торцевой стороне якоря эти провода соединены попарно так называемыми соединительными проводами, которые на рисунке изображены штриховыми линиями и отмечены буквами а, b, с, d. Как видим, каждые два активных провода и один соединительный образуют отдельную рамку - секцию якоря, свободные концы которой припаяны к паре пластин коллектора.

Слайд 15

Первую секцию составляют активные провода 1 и 4 и соединительный провод а; концы ее припаяны к коллекторным пластинам I и II. К той же пластине II припаян свободный конец активного провода 3, который вместе с активным проводом 6 и соединительным проводом b образует вторую секцию; свободный конец этой секции припаян к коллекторной пластине III, и к той же пластине припаян конец третьей секции, состоящей из активных проводов 5 и 8 и соединительного провода с. Другой свободный конец третьей секции припаян к коллекторной пластине IV. Наконец, четвертую секцию составляют активные провода 7 и 2 и соединительный провод d. Концы этой секции припаяны соответственно к коллекторным пластинам IV и I.Мы видим, таким образом, что все секции якоря барабанного типа соединены друг с другом так, что они образуют одну замкнутую цепь. Такой якорь называют поэтому короткозамкнутым.Пластины коллектора I-IV и щетки Р и Q показаны на рис. 333 в той же плоскости, но на самом деле они, так же как и провода, соединяющие их с концами секций и изображенные на рисунке сплошными линиями, находятся на противоположной стороне цилиндра.Разберем подробнее эту схему, чтобы выявить основные принципиальные особенности конструкции и работы якоря барабанного типа.

Слайд 16

Щетки Р и Q прижимаются к паре противоположных пластин коллектора. На рис. 336, а изображен момент, когда щетка Р касается пластины I, а щетка Q- пластины III. Нетрудно видеть, что, выйдя, например, из щетки Р, мы можем прийти к щетке Q по двум параллельно Рис. 336. Схема присоединения секций якоря к щеткам в два момента времени, отстоящие на четверть периода: а) одна ветвь содержит секции 1 и 2, а другая - секции 3 и 4; б) первая ветвь содержит секции 4 и 1, а вторая - секции 2 и 3. Во внешней цепи (нагрузке) ток всегда идет от Р к Q включенным между ними ветвям: либо через секции 1 и 2, либо через секции 4 и 3, как это схематически показано на рис. 336, а. Через четверть оборота щетки будут касаться пластин II и IV, но опять между ними окажутся две параллельные ветви с секциями 4 и 1 в одной ветви и 2 и 3 - в другой (рис. 336, б). То же будет иметь место и в другие моменты вращения якоря.

Слайд 17

Таким образом, короткозамкнутая цепь якоря в любой момент времени распадается между щетками на две параллельные ветви, в каждую из которых последовательно включена половина секций якоря. При вращении якоря в поле индуктора в каждой секции индуцируется переменная э. д. с. Направления токов, индуцируемых в некоторый момент времени в различных секциях, отмечены на рис. 336 стрелками. Через половину периода все направления индуцированных э. д. с. и токов изменятся на обратные, но так как в момент изменения их знака щетки меняются местами, то во внешней цепи ток будет всегда иметь одно и то же направление; щетка Р всегда является положительным, а щетка Q - отрицательным полюсом генератора. Таким образом, коллектор выпрямляет переменную э. д. с, возникающую в отдельных секциях якоря.Из рис. 336 мы видим, что э. д. с, действующие в обеих ветвях, на которые распадается цепь якоря, направлены «навстречу» друг другу. Поэтому, если бы во внешней цепи не было тока, т. е. к зажимам генератора не была бы присоединена никакая нагрузка, то общая э. д. с, действующая в короткозамкнутой цепи якоря, была бы равна нулю, т, е. тока в этой цепи не было бы. Положение было бы таким же, как

Слайд 18

Рис. 337. а) В цепи, составленной из двух включенных «навстречу» элементов, при отсутствии нагрузки тока нет. б) При наличии нагрузки элементы соединены по отношению к ней параллельно. Ток нагрузки разветвляется и половина его проходит через каждую ветвь при включении «навстречу» друг другу двух гальванических элементов без внешней нагрузки (рис. 337, а). Если же мы присоединим к этим двум элементам нагрузку (рис. 337, б), то по отношению к внешней сети оба элемента окажутся включенными параллельно, т. е. напряжение на зажимах сети (М и N) будет равно напряжению каждого элемента. То же, очевидно, будет иметь место и в нашем генераторе, если к его зажимам (М и N на рис. 333) мы присоединим какую-нибудь нагрузку (лампы, двигатели и т. п.): напряжение на зажимах генератора будет равно напряжению, создаваемому в каждой из двух параллельных ветвей, на которые распадается якорь генератора.

Слайд 19

Э. д. с, индуцированные в каждой из этих ветвей, складываются из э. д. с. каждой из последовательно соединенных секций, входящих в эту ветвь. Поэтому мгновенное значение результирующей э. д. с. будет равно сумме мгновенных значений отдельных э. д. с. Но при определении формы результирующего напряжения на зажимах генератора нужно учитывать два обстоятельства: а) благодаря наличию коллектора каждое из складываемых напряжений выпрямляется, т. е. имеет форму, изображаемую кривыми 1 или 2 на рис. 338; б) напряжения эти сдвинуты по фазе на четверть периода, так как секции, входящие в каждую ветвь, смещены друг относительно друга на p/2. Кривая 3 на рис. 338, полученная путем сложения соответственных ординат кривых 1 и 2, изображает форму напряжения на зажимах генератора. Как видим, пульсации на этой кривой имеют удвоенную частоту и значительно меньше, чем пульсации в каждой секции. Напряжение и ток в цепи уже не только прямые (не меняющие направления), но и почти постоянные.

Слайд 20

Чтобы еще более сгладить пульсации и сделать ток практически совершенно постоянным, на практике помещают на якоре машины не 4 отдельные секции, а значительно большее число их: 8, 16, 24, ... Такое же число раздельных пластин имеется на коллекторе. Схемы соединения при этом, конечно, значительно усложняются, но принципиально такойякорь ничем не отличается от описанного. Все секции его образуют одну короткозамкнутую цепь, распадающуюся по отношению к щеткам машины на две параллельные ветви, в каждой из которых действуют последовательно соединенные и смещенные по фазе друг относительно друга э. д. с. половинного числа секций. При сложении этих э. д. с. получается почти постоянная э. д. с. с очень малыми пульсациями.

Посмотреть все слайды