Схема блока питания спутникового тюнера. Устройство и ремонт источников питания цифровых ств тюнеров. Вот оригинальная схема блока питания ресивера

Ремонт ресивера Триколор GS8300

Всем привет. Сегодня покажу решение как оказалось распространенной проблемы. В одно прекрасное утро, собираясь посмотреть телевизор, меня огорчил черный экран. Посмотрев на ресивер триколора, заметил, что тот как бы сдох. 🙂

Ресивер GS8300N не реагировал на подачу питания (индикаторы не загорались). Так как гарантия давно закончилась я принялся разбирать сей аппарат. Картина была неприятная, сгорел блок питания ресивера. Данный ресивер как и телевизор со дня покупки был запитан через стабилизатор напряжения, однако, это его не спасло.

Конденсатор по питанию высох и вздулся, от перегрева выгорело несколько радиоэлементов.

Что бы не разводить плагиат с текстом выложу видео, которое помогло мне быстро отремонтировать блок питания ресивера. В нем подробно описывается процесс ремонта. К тому же схема немного переделана и работает отлично.

Покажу затраты на ремонт, а там сами решайте стоит оно того или нет.

  • Микросхема — 60 рублей
  • Диод — 2 рубля.

Если руки прямые, то оно того стоит!

После проверки диодов выявил один пробитый.

Вот оригинальная схема блока питания ресивера.

А вот оно, видео! 🙂

Если пригодилось всегда рад за спасибо. Если что не понятно обязательно отвечу в комменты. У меня все получилось с первого раза и данная переделанная схема работает отлично.

Обязательно загляните сюда:

  • Ремонт стиральной машины своими руками Всем привет. Позвольте Вам представить небольшую инструкцию, в которой я расскажу как заменить неисправные подшипники барабана стиральной машины. […]
  • Ремонт газовой колонки Нева Транзит Всем привет. Давно не писал полезного и спешу вам предоставить небольшой мануал по исправлению одной неисправности в газовых колонках. Вернее двух […]
  • Первый запуск плоттера Сначала немного предыстории. Наша организация приобрела плоттер HP Designdjet T1300 около года назад. Долгое время он стоял в упаковке, пока определялось место где […]
Хорошая вещь внешний ТВ тюнер компьютера. В моей небольшой комнате не нашлось место и телевизору и монитору компьютера - да это теперь и не нужно. Ведь с помощью такого полезнейшего девайса как ТВ тюнер, можно превратить в телевизор абсолютно любой монитор. Хоть старый кинескопный, хоть современный LED.

Причём рекомендую покупать именно внешний тюнер, который не требует включения самого системного блока компьютера (например Grand ua40ext.). такой ТВ тюнер работает автономно и является своеобразным переключателем сигнала - когда он неактивен, то на монитор идёт изображение с видеокарты, а когда мы пультом включили тюнер - автоматически сигнал с компа отключается и на монитор поступает телесигнал. А можно слушать ФМ, или подавать на вход видеосигнал с миниатюрного видеоглазка на входной двери, или эту видеокамеру разместить в детской, а в другом помещении (кухне) следить за ситуацией.


Но недавно возникла проблема: после включения ТВ тюнер работал пару минут и сам отключался. Повторное включение приводило к аналогичному результату.


В общем начинаем вскрытие. Естественно первая и конечно правильная мысль - проблемы с питанием. Скажу без преувеличения, неисправности с блоками питания или питающим напряжением, является причиной поломок радиоаппаратуры в половине случаев.


Для питания тюнера служит небольшой импульсный внешний адаптер на 5 вольт пол ампера. Меряем напряжение на входе штеккера питания - всего 3,8В!


Конечно ни одна цифровая микросхема тв-процессор такого не потерпит. Вот и происходит отключение устройства.


Но что интересно - на холостом ходу адаптер показывает положенные 5 вольт. Придётся делать вскрытие и блоку питания.


Снабдить винтами корпус БП китайцы поленились, поэтому сделаем радикально - используем режущий инструмент.


Внутри небольшая платка, в стиле зарядного устройства для мобилы. Представляет собой электронный трансформатор со стабилизацией выходного напряжения.


Проводим осмотр. Очень подозрительно выглядит электролит на выходе питания. Вроде даже вздулся и разгерметизировался.


Найдя аналогичный конденсатор на 470мкФ проводим замену. Предварительно необходимо померять его измерителем ESR, но мой прибор ещё не доделан, поэтому данный пункт пропускаю:)


Испытание показало, что теперь напряжение 5 вольт не падает даже под нагрузкой. Подключаем БП к ТВ тюнеру и видим, что на выходе практически нормальное напряжение.


Теперь можно закрывать корпус ТВ тюнера и подключать его к монитору. Проверяем - всё работает прекрасно. С тех пор прошло два месяца, больше подобного дефекта не возникало.

Обсудить статью РЕМОНТ ТВ ТЮНЕРА

При эксплуатации спутниковых ресиверов Globo, Bigsat, Allsat, Yumatu, Lumax, Digital, Boston и др. им подобных была замечена присущая всем им одна неисправность:

Тюнер не запускается, на лицевой панели горит светодиод, а цифровой дисплей не светится или слабо мерцает. Причиной такого поведения тюнеров была неисправность блоков питания по цепям +3,3V, значительно реже в цепях +5V.

Более, чем в 90% причиной оказались некачественные конденсаторы (C15) блока питания в цепях 3,3 вольта.

Важно помнить, что стабилизация группы напряжений всего блока питания осуществляется именно по цепи +3,3V, и именно в ней установлен светодиод оптопары (PC817).

Неисправные конденсаторы часто вздуваются, а их торцевая поверхность принимает сферическую форму. Определить вздувшийся конденсатор можно визуально.

На начальной стадии высыхания конденсатора (C15) напряжение +3,3V в норме (обратная связь ещё способна компенсировать снижение ёмкости конденсатора) , (но остальные напряжения будут выше нормы). Напряжения в цепях +5V, +12V и +22V (при неисправностях в цепи +3,3V) будут завышены. (Схема стабилизации стремится поддерживать напряжение в цепи +3,3V в норме, повышая одновременно напряжение во всех цепях вторичного напряжения)

После замены неисправных элементов все напряжения приходят в норму как на холостом ходу, так и под нагрузкой.

напряжение до диода D8
напряжение после диода D8
напряжение на обмотре тр-ра

На осциллограмме "напряжение после диода D8" (должна быть прямая горизонтальная линия на уровне +3,3 В);

Замены неисправных ёмкостей обычно оказывается достаточно для восстановления работоспособности тюнера. Материнские платы данного вида аппаратуры имеют достаточно высокую надёжность.

Примечание: Однажды кроме замены конденсаторов потребовалась замена выпрямительного диода (D8) в цепи +3,3 V. В некоторых моделях тюнеров схема блока питания имеет другую нумерацию элементов.

В ряде случаев из-за перенапряжения в сети сгорали 2 диода в мосте на высоковольтной стороне и предохранитель. Диоды сгорают парами. Сгоревшие диоды замыкаются накоротко, поэтому они тянут с собой только предохранитель, вся остальная схема обычно остаётся неповреждённой.

Схема блока питания на микросхеме dmo265r

спутниковых тюнеров Глобо, Бостон, БигСАТ...

  • F1 – предохранитель;
  • C2, LP1, C3 – предотвращают проникновение ВЧ мусора от ИБП в сеть;
  • NTC-1 – терморезистор, выполняет функцию ограничителя тока заряда конденсатора, в момент подключения ИБП к сети;
  • C11, R3, D5 – цепочка ограничивает всплески ЭДС первичной обмотки трансформатора в момент закрывания силового транзистора (защищает силовой транзистор микросхемы)
  • U1 – микросхема, включает в себя схему управления и силовой транзистор;
  • R4 – ограничитель тока;
  • C12 –
  • DZ1 – стабилитрон (в схеме, рекомендованной производителем не предусмотрен)
  • U2 – оптопара;
  • TR2 – трансформатор;
  • D7 – выпрямительный диод в цепи +22 В;
  • C13, L1, C16 – фильтр в цепи в цепи +22 В;
  • D10 – выпрямительный диод в цепи +12 В;
  • C19, L4, C20 – фильтр в цепи +12 В;
  • D11 – выпрямительный диод в цепи +5 В;
  • C1, L3, C14 – фильтр в цепи +5 В;
  • C15, L2, C17 – фильтр в цепи +3,3 В;
  • R15, R19, R1, R18 – нагрузочные резисторы (обеспечивают стабильность напряжений при существенном уменьшении нагрузки в цепи);
  • U2, U3 – микросхема KA431A2. В нормальном состоянии на входе 2 2,5 В. При увеличении напряжения в цепи +3,3 В увеличивается и напряжение на входе 2 микросхемы KA431A2. В этом случае открывается выходной транзистор и зажигается светодиод оптопары U3 (PC817);
  • C33, R8 – цепочка исключает самовозбуждение микросхемы KA431A2.

  • - при появлении напряжения питания (310 В) на конденсаторе С1 и выводе 5 микросхемы через внутреннюю схему ограничения тока, встроенный ключ, вывод 2 микросхемы заряжается конденсатор С8 до напряжения 12 В. Далее ключ разрывает описанную цепь;

Блок питания тюнера GLOBO 7010A

  • F1 – предохранитель;
  • C4, C5 – емкостной делитель напряжения обеспечивает половину напряжения сети на корпусе прибора (реализовано практически во всей AV аппаратуре для возможности безопасного соединения аппаратуры);
  • C2, LF1 – предотвращают проникновение ВЧ мусора от ИБП в сеть;
  • MOV1 – варистор (210pF 470volts 10%) ограничивает влияние импульсных перенапряжений сети на ИБП (при длительных перенапряжениях замыкаются и сжигают предохранитель, защищая остальную схему);
  • D1, D2, D3, D4 – диодный мост, выпрямитель сетевого напряжения;;
  • C1 – сглаживает пульсации выпрямленного напряжения сети (напряжение на нём около 310 В);
  • C10, R3, D5 – цепочка ограничивает всплески ЭДС первичной обмотки трансформатора в момент закрывания силового транзистора (защищает силовой транзистор микросхемы)
  • U1 – микросхема KA5MO365R, включает в себя схему управления и силовой транзистор;
  • R5, D6, C8 – питают микросхему после запуска (включения) от дополнительной обмотки трансформатора;
  • C9, R6 – фильтр в цепи схемы стабилизации;
  • U2 – оптопара;
  • TR1 – трансформатор;
  • D11 – выпрямительный диод в цепи +30 В;
  • C21, R20, C22, C32 – фильтр в цепи в цепи +30 В;
  • D12, D13 - ограничивают напряжение в цепи +30 В (могут сгорать при высыхании конденсаторов C13, C15);
  • D16 – выпрямительный диод в цепи -12 В;
  • C24, R19, C27, – фильтр в цепи в цепи -12 В;
  • D17 - ограничивает напряжение в цепи -12 В (может сгорать при высыхании конденсаторов C13, C15);
  • D10 – выпрямительный диод в цепи +22 В;
  • C19, L4, C20, C30 – фильтр в цепи в цепи +22 В;
  • D9 – выпрямительный диод в цепи +12 В;
  • C17, L3, C18, C29 – фильтр в цепи +12 В;
  • D7 – выпрямительный диод в цепи +5 В;
  • C13, L1, C14, C26 – фильтр в цепи +5 В (высыхание C13 вызывает увеличение остальных выходных напряжений БП);
  • D8 – выпрямительный диод в цепи +3,3 В;
  • C15, L2, C16, C31 – фильтр в цепи +3,3 В (высыхание C15 вызывает увеличение остальных выходных напряжений БП);
  • R(D14), R12, R15, R18 – нагрузочные резисторы (обеспечивают стабильность напряжений при существенном уменьшении нагрузки в цепи);
  • R17, R9 – делитель напряжения (нормальном режиме обеспечивает деление напряжения 3,3 В / 2,5 В);
  • R10, R9 – делитель напряжения (нормальном режиме обеспечивает деление напряжения 5 В / 2,5 В);
  • U3 – микросхема TL431. В нормальном состоянии на входе 2 2,5 В. При увеличении напряжения в цепи +3,3 В увеличивается и напряжение на входе 2 микросхемы TL431. В этом случае открывается выходной транзистор и зажигается светодиод оптопары U3 (PC817);
  • R7 - Ограничительное сопротивление обеспечивает нормальный режим для светодиода оптопары PC817;
  • C23, R8 – цепочка исключает самовозбуждение микросхемы TL431.

Питание микросхемы производится следующим образом:

  • - при появлении напряжения питания (310 В) на конденсаторе С1 через резисторы R1, R2 заряжается конденсатор С8, подавая напряжение питания на вывод 3 микросхемы.
  • - запускается ШИМ генератор и схема питается уже по цепи: дополнительная обмотка трансформатора, R5, D6, конденсатор C8.

Схема блока питания на микросхеме STRG6351

  • F81 – предохранитель;
  • С81, С82, L81 – предотвращают проникновение ВЧ мусора от ИБП в сеть;
  • С83, С84 – емкостной делитель напряжения обеспечивает половину напряжения сети на корпусе прибора (110 В относительно нуля и 110 В относительно фазы. Реализовано практически во всей AV аппаратуре для возможности безопасного соединения аппаратуры, питающейся от одной розетки);
  • RU81 – варистор ограничивает влияние импульсных перенапряжений сети на ИБП (при длительных перенапряжениях замыкается и сжигает предохранитель, защищая остальную схему);
  • D81, D82, D83, D84 – диодный мост, выпрямитель сетевого напряжения;
  • MCT 100-9 – разрывное сопротивление, выполняет функцию ограничителя тока заряда конденсатора C85, в момент подключения ИБП к сети. Сгорает при повреждении микросхемы STRG6351;
  • C85 – сглаживает пульсации выпрямленного напряжения сети (напряжение на нём около 310 В);
  • C86, D85, R82 – цепочка ограничивает всплески ЭДС первичной обмотки трансформатора в момент закрывания силового транзистора (защищает силовой транзистор микросхемы STRG6351);
  • R81, C87 – обеспечивают напряжением питания схему управления микросхемы STRG6351 в момент запуска (включения);
  • IC81 - микросхема STRG6351 (преобразователь) включает в себя схему управления и силовой транзистор;
  • R83, D86, C87 – питают схему управления микросхемы STRG6351 после запуска (включения) от дополнительной обмотки трансформатора;
  • R86, PC81, D87, C88– часть схемы стабилизации, расположенная на высоковольтной стороне ИБП. При зажигании светодиода оптопары открывается фототранзистор, увеличивается напряжение на конденсаторе C88 и 6 выводе микросхемы STRG6351, что приводит к уменьшению длительности открытого состояния силового транзистора и снижению выходных напряжений;
  • R85, R84, C88 – цепь защиты от перегрузок. При перегрузке увеличивается ток по цепи: первичная обмотка трансформатора, силовой транзистор, сопротивление R84 > увеличивается напряжение на C88 и 6 выводе микросхемы STRG63511, что приводит к уменьшению длительности открытого состояния силового транзистора;
  • D26, C30 – выпрямитель цепи +30 В;
  • L26, C31 – фильтр цепи +30 В;
  • D25, C28 – выпрямитель цепи +23 В;
  • L25, C29 - фильтр цепи +23 В;
  • D23, C25 – выпрямитель цепи +12 В;
  • IC21, C26 – стабилизатор цепи +12 В;
  • D22, C23 – выпрямитель цепи +7 В;
  • L22, C24 - фильтр цепи +7 В;
  • D21, C21 – выпрямитель цепи +3,3 В;
  • L21, C22 - фильтр цепи +3,3 В;
  • R31, R27, R22, R21 – нагрузочные резисторы (обеспечивают стабильность напряжений при существенном уменьшении нагрузки в цепи);
  • Часть схемы стабилизации, расположенная на низковольтной стороне ИБП.

  • R53, R54 – делитель напряжения (нормальном режиме обеспечивает деление напряжения 3,3 В / 2,5 В);
  • IC51, C51 – микросхема TL431. В нормальном состоянии на входе 2 2,5 В. При увеличении напряжения в цепи +3,3 В увеличивается и напряжение на входе 2 микросхемы TL431. В этом случае открывается выходной транзистор и зажигается светодиод оптопары PC81;
  • R51, PC81 – Ограничительное сопротивление обеспечивает нормальный режим для светодиода оптопары PC817.

Оборудование для цифрового телевидения - это то что можно купить в нашем магазине. Наша компания работает на рынке эфирного и спутникового оборудования с 2003 года и большую часть наших клиентов мы знаем уже в лицо.
Для постоянных покупателей нашего интернет магазина действует система скидок, которая рассчитывается автоматически по номеру купона присвоенному лично вам.
Все оборудование проходит предпродажную подготовку, а именно устанавливается последняя версия ПО на спутниковые и эфирные приставки. Все ресиверы проверяются на работоспособность.
Наша компания производит доставку оборудования, как по Москве так и по всей России. С большинством компаний курьерской доставки заключены соглашения о льготной цене доставки.
В нашем интернет магазине вы сможете найти практически любое оборудование, которое может вам понадобится для приема спутникового и эфирного телевидения. Мы постарались сделать удобным процесс оформления заказа для любого Если вы планируете заказать не одну позицию, а несколько, то вы можете воспользоваться поиском по магазину и обратить внимание на сопутствующее оборудование.Если вы ходите подобрать оборудование для приема спутникового тв, то вам следует пройти по вкладке меню "Спутниковое телевидение", если для приема эфирного или кабельного тв, то "Эфирное телевидения" и.т.д. Если в процессе заказа у вас возникают вопросы, то вы можете воспользоваться онлайн чатом, который расположен на каждой странице интернет магазина или заказать обратный звонок.
Надеемся, что в интернет магазине цифрового тв вы сможете потратить минимальное количество времени на заказ требуемого оборудования.

В этой статье мы с вами будем устранять самую распространенную поломку в спутниковом ресивере , а именно, будем ремонтировать блок питания этого устройства. Почему именно блок питания? Да потому, что в 95% случаев выхода из строя ресивера, виновником является блок питания . может не включаться вообще, может включаться «на половину» (например: красный индикатор горит, а зелёный, не смотря на наши усилия при нажатии определённой кнопки, не включается и ещё очень множество признаков), а может не работать какая-либо функция. И причиной всех этих недоразумений, в большинстве случаев, и может быть блок питания. Ремонтировать мы с вами будем ресивер «SVEC» , но функционально, на большинстве таких аппаратов, блоки питания отличаются лишь формой и расположением радиоэлементов. Принцип ремонта ресиверов, почти всегда одинаков.

Итак, начнём. Для начала, естественно, нужно разобрать наш «агрегат». Откручиваем шурупы или болтики по бокам крышки и снимаем её. Перед нами предстаёт такая вот картина:


Теперь осмотрим визуально блок и плату, на предмет видимых причин поломки (это может быть «вздутие» конденсаторов, прогорание платы или отдельных элементов и т.п.). Если видимых причин не обнаружено, то смотрим на предохранитель. Даже если визуально не видно, что предохранитель «сгорел», лучше, всё-таки, проверить его целостность прибором. Если предохранитель не рабочий, не спешите менять его и пробовать включать ресивер. Обычно они просто так не «сгорают», напротив, в большинстве своём, при перенапряжении в сети, они остаются невредимыми, а что-нибудь другое обязательно выходит из строя. Так уж устроена современная техника. В общем, нам нужно извлечь блок питания (на рисунке он отмечен синий стрелкой) из ресивера , чтобы проверить другие элементы.

В первую очередь, нужно проверить силовой конденсатор: в нём может быть остаточный заряд. Если есть заряд в конденсаторе, нужно обязательно разрядить его, иначе при проверке других радиоэлементов, мы можем не только «спалить» прибор, но и получить хороший удар током, пусть и не смертельный, но всё равно неприятно.

После этого приступаем к проверке основного транзистора, который стоит на радиаторе. Если отбросить все профессиональные термины, то просто «прозваниваем» его на предмет «короткого замыкания». Эти транзисторы постоянно выходят из строя, обозначаются так: D13009K. Буквенные значения могут быть разные, а числовые должны совпадать. Этот транзистор стоит во многих ресиверах , но не во всех. В других стоят подобные или могут стоять микросхемы. Это не суть, важно то, что в большинстве случаев, выходят из строя именно силовые транзисторы или микросхемы.

На нашем блоке питания , после проверки данного транзистора, обнаружилось короткое замыкание между его контактами. Из этого следует, что транзистор «сгоревший».

Теперь нам нужно выпаять его и проверить остальные радиоэлементы. Проверку объясню по-простому: нужно проверить все транзисторы и диоды (стабилитроны), на «короткое замыкание».

Все детали, отмеченные на картинке стрелками, нужно проверить на «короткое замыкание». После такой проверки, я обнаружил «сгоревший» диод, который стоит на питании 5В. Его нам нужно, также, выпаять, чтобы, как и транзистор, заменить на годный.

Далее, впаиваем новые транзистор и диод на свои места. После этого можно проверить наш блок питания . Делаем это так: вставляем его в ресивер и подсоединяем к нему только шнур питания и кнопку включения. Шлейф с проводами, который идёт на плату с процессорами, НЕ подсоединяем. Проверять будем по выходным напряжениям, значение которых обозначено на блоке питания , возле «гнезда», куда вставляется шлейф.

Замеряем напряжения на выходе блока питания и, если они совпадают со значениями на плате, можно подключать шлейф.

Всё. Теперь прикручиваем все болтики, которые крепят блок питания к ресиверу и закрываем наш аппарат крышкой. Готово.

Вот, в общем-то, и всё. Наш ресивер снова работает, как новый.

Конечно, здесь описан самый распространённый и не сложный вид поломки. Могут быть и более серьёзные причины выхода из строя данного устройства. Тогда, без вмешательства специалиста, не обойтись, но ничего не делая, невозможно чему-нибудь научиться.