Схемотехника умзч высокой верности схемы. Умзч вв с микроконтроллерной системой управления. Полный набор сервисных узлов

Виктор Жуковский, г. Красноармейск Донецкой обл.

УМЗЧ ВВ-2010 — новая раз­работка из широко известной ли­нейки усилителей УМЗЧ BB (вы­сокой верности) [ 1; 2; 5]. На ряд использованных технических ре­шений оказали влияние работы Агеева СИ. .

Усилитель обеспечивает Kr порядка 0,001% на частоте 20 кГц при Рвых = 150 Вт на нагрузке 8 Ом, полоса частот малого сигна­ла по уровню -3 дБ — 0 Гц … 800 кГц, скорость нарастания выход­ного напряжения -100 В/мкс, от­ношение сигнал/шум и сигнал/ фон -120 дБ.

Благодаря применению ОУ, работающего в облегчённом ре­жиме, а также использованию в усилителе напряжения только каскадов с OK и ОБ, охваченных глубокими местными ООС, УМЗЧ BB отличается высокой линейно­стью ещё до охвата общей ООС. В самом первом усилителе высо­кой верности ещё в 1985 году были применены решения, до тех пор использовавшиеся только в измерительной техни­ке: режимы по постоянному току поддерживает отдельный сер­висный узел, для снижения уровня интерфейсных искажений охвачено общей обратной отрицательной связью переходное сопротивление контактной группы реле коммутации АС, а спе­циальный узел эффективно компенсирует влияние на эти ис­кажения сопротивления кабелей АС. Традиция сохранилась и в УМЗЧ ВВ-2010, вместе с тем общая ООС охватывает и со­противление выходного ФНЧ.

В абсолютном большинстве конструкций других УМЗЧ, как профессиональных, так и любительских, многие их этих реше­ний отсутствуют до сих пор. Вместе с тем высокие техничес­кие характеристики и аудиофильские достоинства УМЗЧ BB достигнуты простыми схемотехническими решениями и мини­мумом активных элементов. По сути, это сравнительно неслож­ный усилитель: один канал не торопясь можно собрать за пару дней, а настройка заключается лишь в установке необходимо­го тока покоя выходных транзисторов. Специально для начи­нающих радиолюбителей разработана методика поузловой, покаскадной проверки работоспособности и наладки, пользу­ясь которой можно гарантированно локализовать места воз­можных ошибок и предотвратить их возможные последствия ещё до полной сборки УМЗЧ. На все возможные вопросы по этому или подобным усилителям есть подробные объяснения, как на бумажных носителях, так и в Интернете.

На входе усилителя предусмотрен ФВЧ R1C1 с частотой среза 1,6 Гц, рис.1. Но эффективность работы устройства ста­билизации режимов позволяет усилителю работать со вход­ным сигналом, содержащим до 400 мВ напряжения постоян­ной составляющей. Поэтому С1 исключён, что реализует из­вечную аудиофильскую мечту о тракте без конденсаторов © и заметно улучшает звучание усилителя.

Ёмкость конденсатора С2 входного ФНЧ R2C2 выбрана так, чтобы частота среза входного ФНЧ с учётом выходного сопро­тивления предусилителя 500 Ом -1 кОм находилась в преде­лах от 120 до 200 кГц. На вход ОУ DA1 вынесена цепь частот­ной коррекции R3R5C3, ограничивающая полосу отрабатыва­емых гармоник и помех, поступающих по цепи ООС со сторо­ны выхода УМЗЧ, полосой 215 кГц по уровню -3 дБ и повыша­ющая устойчивость усилителя. Эта цепь позволяет уменьшить разностный сигнал выше частоты среза цепи и тем исключить напрасную перегрузку усилителя напряжения сигналами вы­сокочастотных наводок, помех и гармоник, устраняя возмож­ность возникновения динамических интермодуляционных ис­кажений (TIM; DIM).

Далее сигнал поступает на вход малошумящего операци­онного усилителя с полевыми транзисторами на входе DA1. Много «претензий» к УМЗЧ BB предъявляются оппонентами по поводу применения на входе ОУ, якобы ухудшающего ка­чество звучания и «крадущего виртуальную глубину» звука. В связи с этим необходимо обратить внимание на некоторые вполне очевидные особенности работы ОУ в УМЗЧ ВВ.

Операционные усилители предварительных усилителей, послеЦАПовые ОУ вынуждены развивать несколько вольт вы­ходного напряжения. Поскольку коэффициент усиления ОУ невелик и составляет от 500 до 2.000 раз на 20 кГц, это указы­вает на их работу с относительно большим напряжением раз­ностного сигнала — от нескольких сот микровольт на НЧ до не­скольких милливольт на 20 кГц и высокую вероятность внесе­ния входным каскадом ОУ интермодуляционных искажений. Выходное напряжение этих ОУ равно выходному напряжению последнего каскада усиления напряжения, выполненного обыч­но по схеме с ОЭ. Выходное напряжение в несколько вольт говорит о работе этого каскада с довольно большими входны­ми и выходными напряжениями, и как следствие — внесении им искажений в усиливаемый сигнал. ОУ нагружен на сопро­тивление параллельно включенных цепи ООС и нагрузки, со­ставляющее иногда несколько килоом, что требует от выход­ного повторителя усилителя выходного тока до нескольких миллиампер. Поэтому изменения тока выходного повторите­ля ИМС, выходные каскады которой потребляют ток не более 2 мА, довольно значительны, что также указывает на внесение ими искажений в усиливаемый сигнал. Видим, что входной каскад, каскад усиления напряжения и выходной каскад ОУ могут вносить искажения.

А вот схемотехника усилителя высокой верности благода­ря высоким усилению и входному сопротивлению транзистор­ной части усилителя напряжения обеспечивает весьма щадя­щие условия работы ОУ DA1. Судите сами. Даже в развившем номинальное выходное напряжение 50 В УМЗЧ входной диф­ференциальный каскад ОУ работает с разностными сигнала­ми напряжением от 12 мкВ на частотах 500 Гц до 500 мкВ на частоте 20 кГц. Соотношение высокой входной перегрузочной способности дифкаскада, выполненного на полевых транзис­торах, и мизерного напряжения разностного сигнала обеспе­чивает высокую линейность усиления сигнала. Выходное на­пряжение ОУ не превышает 300 мВ. что говорит о малом входном напряжении каскада усиления напряжения с общим эмит­тером из состава операционного усилителя — до 60 мкВ — и линейном режиме его работы. Выходной каскад ОУ отдаёт в нагрузку порядка 100 кОм со стороны базы VT2 переменный ток не более 3 мкА. Следовательно, выходной каскад ОУ тоже работает в предельно облегчённом режиме, практически на холостом ходу. На реальном музыкальном сигнале напряже­ния и токи большую часть времени на порядок меньше приве­денных значений.

Из сравнения напряжений разностного и выходного сиг­налов, а также тока нагрузки видно, что в целом операцион­ный усилитель в УМЗЧ BB работает в сотни раз более лёгком, а, значит, и линейном режиме, чем режим ОУ предусилителей и послеЦАПовых ОУ CD-проигрывателей, служащих источни­ками сигнала для УМЗЧ с любой глубиной ООС, а также и вов­се без оной. Следовательно, один и тот же ОУ будет вносить в составе УМЗЧ BB гораздо меньшие искажения, чем в одиноч­ном включении.

Изредка встречается мнение, что вносимые каскадом ис­кажения неоднозначно зависят от напряжения входного сиг­нала. Это ошибка. Зависимость проявления нелинейности кас­када от напряжения входного сигнала может подчиняться тому или иному закону, но она всегда однозначна: увеличение это­го напряжения никогда не приводит к уменьшению вносимых искажений, а только к увеличению.

Известно, что уровень продуктов искажений, приходящийся на данную частоту, снижается пропорционально глубине от­рицательной обратной связи для этой частоты. Коэффициент усиления холостого хода, до охвата усилителя ООС, на низ­ких частотах ввиду малости входного сигнала измерить невоз­можно. Согласно расчётам, развиваемое до охвата ООС уси­ление холостого хода позволяет достичь глубины ООС 104 дБ на частотах до 500 Гц. Измерения для частот, начиная с 10 кГц, показывают, что глубина ООС на частоте 10 кГц достига­ет 80 дБ, на частоте 20 кГц — 72 дБ, на частоте 50 кГц — 62 дБ и 40 дБ — на частоте 200 кГц. На рис.2 показаны амплитудно-частотные характеристики УМЗЧ ВВ-2010 и, для сравнения, сходного по сложности УМЗЧ Леонида Зуева .

Высокое усиление до охвата ООС — основная особенность схемотехники усилителей ВВ. Поскольку целью всех схемотех­нических ухищрений является достижение высокой линейнос­ти и большого усиления для ведения глубокой ООС в макси­мально широкой полосе частот, это означает, что подобными структурами исчерпываются схемотехнические методы совер­шенствования параметров усилителей. Дальнейшее снижение искажений может быть обеспечено только конструктивными мерами, направленными на уменьшение наводок гармоник выходного каскада на входные цепи, особенно — на цепь ин­вертирующего входа, усиление от которой максимально.

Ещё одна особенность схемотехники УМЗЧ BB заключает­ся в токовом управлении выходным каскадом усилителя на­пряжения. Входной ОУ управляет каскадом преобразования напряжение-ток, выполненным с OK и ОБ, а полученный ток вычитается из тока покоя каскада, выполненного по схеме с ОБ.

Применение линеаризирующего резистора R17 сопротив­лением 1 кОм в дифференциальном каскаде VT1, VT2 на тран­зисторах разной структуры с последовательным питанием по­вышает линейность преобразования выходного напряжения ОУ DA1 в ток коллектора VT2 созданием местной ООС глубиной 40 дБ. Это можно видеть из сравнения суммы собственных сопротивлений эмиттеров VT1, VT2 — примерно по 5 Ом — с сопротивлением R17, или суммы тепловых напряжений VT1, VT2 — около 50 мВ — с падением напряжения на сопротивлении R17, составляющем 5,2 — 5,6 В.

У построенных по рассматриваемой схемотехнике усили­телей наблюдается резкий, 40 дБ на декаду частоты, спад уси­ления свыше частоты 13…16 кГц. Сигнал ошибки, представля­ющий собой продукты искаже­ний, на частотах выше 20 кГц на два-три порядка меньше полез­ного звукового сигнала. Это даёт возможность конвертировать из­быточную на этих частотах линей­ность дифкаскада VT1, VT2 в по­вышение коэффициента усиле­ния транзисторной части УН. Вви­ду незначительных изменений тока дифкаскада VT1, VT2 при усилении слабых сигналов его линейность с уменьшением глу­бины местной ООС существенно не ухудшается, а вот работа ОУ DA1, от режима работы которого на этих частотах зависит линей­ность всего усилителя, запас уси­ления облегчит, так как все на­пряжения, определяющие вноси­мые операционным усилителем искажения, начиная от разно­стного сигнала до выходного, уменьшаются пропорционально выигрышу в усилении на данной частоте.

Цепи коррекции на опереже­ние по фазе R18C13 и R19C16 оп­тимизировались в симуляторе с целью уменьшить разностное на­пряжение ОУ до частот в несколь­ко мегагерц. Удалось повысить усиление УМЗЧ ВВ-2010 по срав­нению с УМЗЧ ВВ-2008 на часто­тах порядка нескольких сот кило­герц. Выигрыш в усилении соста­вил 4 дБ на частоте 200 кГц, 6 -на 300 кГц, 8,6 — на 500 кГц, 10,5 дБ — на 800 кГц, 11 дБ — на 1 МГц и от 10 до 12 дБ — на частотах выше 2 МГц. Это видно из результатов симуляции, рис.3, где нижняя кривая относится к АЧХ цепи коррекции на опережения УМЗЧ ВВ-2008, а верхняя -УМЗЧ ВВ-2010.

VD7 защищает эмиттерный переход VT1 от обратного на­пряжения, возникающего вследствие протекания токов пере­зарядки С13, С16 в режиме ограничения выходного сигнала УМЗЧ по напряжению и возникающих при этом предельных напряжениях с высокой скоростью изменения на выходе ОУ DA1.

Выходной каскад усилителя напряжения выполнен на тран­зисторе VT3, включенном по схеме с общей базой, что исклю­чает проникновение сигнала из выходных цепей каскада во входные и повышает его устойчивость. Каскад с ОБ, нагру­женный на генератор тока на транзисторе VT5 и входное со­противление выходного каскада, развивает высокое устойчи­вое усиление — до 13.000…15.000 раз. Выбор сопротивления резистора R24 вдвое меньшим сопротивления резистора R26 гарантирует равенство токов покоя VT1, VT2 и VT3, VT5. R24, R26 обеспечивают местные ООС, уменьшающие действие эффекта Эрли — изменение п21э в зависимости от коллектор­ного напряжения и повышают исходную линейность усилите­ля на 40 дБ и 46 дБ соответственно. Питание УН отдельным напряжением, по модулю на 15 В выше напряжения выходных каскадов, позволяет устранить эффект квазинасыщения тран­зисторов VT3, VT5, проявляющийся в уменьшении п21э при снижении напряжения коллектор-база ниже 7 В.

Трёхкаскадный выходной повторитель собран на биполяр­ных транзисторах и особых комментариев не требует. Не пы­тайтесь бороться с энтропией ©, экономя на токе покоя вы­ходных транзисторов. Он не должен быть менее 250 мА; в ав­торском варианте — 320 мА.

До срабатывания реле включения AC К1 усилитель охва­чен ООС1, реализованной включением делителя R6R4. Точ­ность соблюдения сопротивления R6 и согласованность этих сопротивлений в разных каналах не существенна, но для со­хранения устойчивости усилителя важно, чтобы сопротивле­ние R6 не было намного ниже суммы сопротивлений R8 и R70. Срабатыванием реле К1 ООС1 отключается и в работу всту­пает цепь ООС2, образованная R8R70C44 и R4, и охватываю­щая контактную группу К1.1, где R70C44 исключает выходной ФНЧ R71L1 R72C47 из цепи ОООС на частотах выше 33 кГц. Частотнозависимая ООС R7C10 формирует спад АЧХ УМЗЧ до выходного ФНЧ на частоте 800 кГц по уровню -3 дБ и обес­печивает запас по глубине ООС выше этой частоты. Спад АЧХ на клеммах AC выше частоты 280 кГц по уровню -3 дБ обеспе­чен совместным действием R7C10 и выходного ФНЧ R71L1 -R72C47.

Резонансные свойства громкоговорителей приводят к из­лучению диффузором затухающих звуковых колебаний, при­звуков после импульсного воздействия и генерации собствен­ного напряжения при пересечении витками катушки громко­говорителя линий магнитного поля в зазоре магнитной систе­мы. Коэффициент демпфирования показывает, как велика амплитуда колебаний диффузора и сколь быстро они затуха­ют при нагрузке AC как генератора на полное сопротивление со стороны УМЗЧ. Этот коэффициент равен отношению сопро­тивления AC к сумме выходного сопротивления УМЗЧ, пере­ходного сопротивления контактной группы реле коммутации АС, сопротивления намотанной обычно проводом недостаточ­ного диаметра катушки индуктивности выходного ФНЧ, пере­ходного сопротивления зажимов кабелей AC и сопротивления собственно кабелей АС.

Кроме того, полное сопротивление акустических систем нелинейно. Протекание искажённых токов по проводам кабе­лей AC создаёт падение напряжения с большой долей нели­нейных искажений, также вычитающееся из неискажённого вы­ходного напряжения усилителя. Поэтому сигнал на зажимах AC искажён гораздо больше, чем на выходе УМЗЧ. Это так называемые интерфейсные искажения.

Для уменьшения этих искажений применена компенсация всех составляющих полного выходного сопротивления усили­теля. Собственное выходное сопротивление УМЗЧ вместе с переходным сопротивлением контактов реле и сопротивлени­ем провода катушки индуктивности выходного ФНЧ уменьше­но действием глубокой общей ООС, взятой с правого вывода L1. Кроме того, подключением правого вывода R70 к «горя­чей» клемме AC можно легко организовать компенсацию пе­реходного сопротивления зажима кабеля AC и сопротивления одного из проводов АС, не опасаясь генерации УМЗЧ из-за фазовых сдвигов в охваченных ООС проводах.

Узел компенсации сопротивления проводов AC выполнен в виде инвертирующего усилителя с Ky = -2 на ОУ DA2, R10, С4, R11 и R9. Входным напряжением для этого усилителя слу­жит падение напряжения на «холодном» («земляном») прово­де АС. Поскольку его сопротивление равно сопротивлению «горячего» провода кабеля АС, для компенсации сопротивле­ния обоих проводов достаточно удвоить напряжение на «хо­лодном» проводе, инвертировать его и через резистор R9 с сопротивлением, равным сумме сопротивлений R8 и R70 цепи ООС, подать на инвертирующий вход ОУ DA1. Тогда выход­ное напряжение УМЗЧ увеличится на сумму падений напря­жений на проводах АС, что равносильно устранению влияния их сопротивления на коэффициент демпфирования и уровень интерфейсных искажений на зажимах АС. Компенсация паде­ния на сопротивлении проводов AC нелинейной составляющей противоЭДС громкоговорителей особенно нужна на нижних частотах звукового диапазона. Напряжение сигнала на ВЧ-громкоговорителе ограничивается подключенными последова­тельно с ним резистором и конденсатором. Их комплексное сопротивление гораздо больше сопротивления проводов ка­беля АС, поэтому компенсация этого сопротивления на ВЧ лишена смысла. Исходя из этого интегрирующая цепь R11C4 ограничивает полосу рабочих частот компенсатора значени­ем 22 кГц.

Особо следует заметить: сопротивление «горячего» про­вода кабеля AC может компенсироваться путём охвата его общей ООС подключением правого вывода R70 специальным проводом к «горячей» клемме АС. В этом случае понадобится компенсация только сопротивления «холодного» провода AC и коэффициент усиления компенсатора сопротивления прово­дов необходимо уменьшить до значения Ку=-1 выбором со­противления резистора R10 равным сопротивлению резисто­ра R11.

Узел токовой защиты предотвращает повреждение выход­ных транзисторов при коротких замыканиях в нагрузке. Дат­чиком тока служат резисторы R53 — R56 и R57 — R60, чего впол­не достаточно. Протекание через эти резисторы выходного тока усилителя создаёт падение напряжения, которое прикла­дывается к делителю R41R42. Напряжение со значением боль­ше порогового открывает транзистор VT10, а его коллектор­ный ток открывает VT8 триггерной ячейки VT8VT9. Эта ячейка переходит в устойчивое состояние с открытыми транзистора­ми и шунтирует цепь HL1VD8, уменьшая ток через стабилит­рон до нуля и запирая VT3. Разрядка С21 небольшим током базы VT3 может занять несколько миллисекунд. После сраба­тывания триггерной ячейки напряжение на нижней обкладке С23, заряженного напряжением на светодиоде HL1 до 1,6 В, повышается с уровня -7,2 В от положительной шины питания УН до уровня -1,2 B 1 напряжение на верхней обкладке этого конденсатора также повышается на 5 В. С21 быстро разряжа­ется через резистор R30 на С23, транзистор VT3 запирается. Тем временем открывается VT6 и через R33, R36 открывает VT7. VT7 шунтирует стабилитрон VD9, разряжает через R31 конденсатор С22 и запирает транзистор VT5. Не получая на­пряжения смещения, транзисторы выходного каскада также запираются.

Восстановление исходного состояния триггера и включе­ние УМЗЧ производится нажатием на кнопку SA1 «Сброс за­щиты». С27 заряжается током коллектора VT9 и шунтирует цепь базы VT8, запирая триггерную ячейку. Если к этому моменту аварийная ситуация устранена и VT10 заперт, ячейка перехо­дит в состояние с устойчиво закрытыми транзисторами. Зак­рываются VT6, VT7, на базы VT3, VT5 подаётся опорное на­пряжение и усилитель входит в рабочий режим. Если корот­кое замыкание в нагрузке УМЗЧ продолжается, защита сра­батывает вновь, даже если конденсатор С27 подключен SA1. Защита работает настолько эффективно, что во время работ по настройке коррекции усилитель несколько раз обесточи­вался для мелких перепаек …прикосновением к неинвертиру-ющему входу. Возникающее самовозбуждение приводило к увеличению тока выходных транзисторов, а защита отключа­ла усилитель. Хотя нельзя предлагать этот грубый метод как правило, но благодаря токовой защите он не причинил вреда выходным транзисторам.

Работа компенсатора сопротивления кабелей АС.

Эффективность работы компенсатора УМЗЧ ВВ-2008 про­верялась старым аудиофильским методом, на слух, коммута­цией входа компенсатора между компенсирующим проводом и общим проводом усилителя. Улучшение звука было явно за­метно, да и будущему хозяину не терпелось получить усили­тель, поэтому измерений влияния компенсатора не проводи­лось. Преимущества схемы с «кабелечисткой» были столь оче­видны, что конфигурация «компенсатор+интегратор» была при­нята как стандартный узел для установки во всех разрабаты­ваемых усилителях.

Удивительно, сколь много излишних споров вокруг полез­ности/ненужности компенсации сопротивления кабелей раз­горелось в Интернете. Как водится, особенно настаивали на прослушивании нелинейного сигнала те, кому предельно про­стая схема кабелечистки казалась сложной и непонятной, зат­раты на неё — непомерными, а установка — трудоёмкой ©. Выс­казывались даже предложения, что, раз уж тратится столь мно­го средств на сам усилитель, то грех экономить на святом, а нужно пойти наилучшим, гламурным путём, каким ходит всё цивилизованное человечество и …приобрести нормальные, че­ловеческие © сверхдорогие кабели из драгметаллов. К мое­му большому удивлению, масла в огонь подлили заявления весьма уважаемых специалистов о ненужности узла компен­сации в домашних условиях, в том числе тех специалистов, которые в своих усилителях этот узел с успехом применяют. Весьма прискорбно, что многие коллеги-радиолюбители с не­доверием отнеслись к сообщениям о повышении качества зву­чания на НЧ и СЧ с включением компенсатора, изо всех сил избегали этого простого пути улучшения работы УМЗЧ, чем обокрали сами себя.

Для документализации истины было проведено небольшое исследование. От генератора ГЗ-118 на УМЗЧ ВВ-2010 был подан ряд частот в районе резонансной частоты АС, напряже­ние контролировалось осциллографом С1-117, а Kr на клеммах AC измерялся ИНИ С6-8, рис.4. Резистор R1 установлен во избежание наводок на вход компенсатора во время пере­ключения его между контрольным и общим проводом. В экс­перименте использовались распространённые и общедоступ­ные кабели AC длиной 3 м и сечением жилы 6 кв. мм, а также акустическая система GIGA FS Il с диапазоном частот 25 -22.000 Гц, номинальным сопротивлением 8 Ом и номиналь­ной мощностью 90 Вт фирмы Acoustic Kingdom.

К сожалению, схемотехника усилителей сигнала гармоник из состава С6-8 предусматривает применение оксидных кон­денсаторов высокой ёмкости в цепях ООС. Это приводит к влиянию низкочастотных шумов этих конденсаторов на разре­шение прибора на низких частотах, вследствие чего его раз­решение на НЧ ухудшается. При измерении Kr сигнала частотой 25 Гц от ГЗ-118 напрямую С6-8 по­казания прибора пляшут вокруг значе­ния 0,02%. Обойти это ограничение с помощью режекторного фильтра гене­ратора ГЗ-118 в случае с измерением эффективности компенсатора не пред­ставляется возможным, т.к. ряд дискрет­ных значений частот настройки 2Т-филь-тра ограничен на НЧ значениями 20,60, 120, 200 Гц и не позволяет измерять Kr на интересующих нас частотах. Поэто­му, скрепя сердце, уровень в 0,02% был принят как нулевой, эталонный.

На частоте 20 Гц при напряжении на клеммах AC 3 В ампл., что соответству­ет выходной мощности 0,56 Вт на на­грузке 8 Ом, Kr составил 0,02% со вклю­ченным компенсатором и 0,06% — после его отключения. При напряжении 10 В ампл, что соответствует выходной мощ­ности 6,25 Вт, значение Kr 0,02% и 0,08% соответственно, при напряжении 20 В ампл и мощности 25 Вт — 0,016% и 0,11%, а при напряжении 30 В ампл и мощности 56 Вт — 0,02% и 0,13%.

Зная облегчённое отношение изго­товителей импортной аппаратуры к зна­чениям надписей, касающихся мощно­сти, а также помня чудесное, после при­нятия западных стандартов, превраще­ние акустической системы 35АС-1 с мощностью низкочастотного громкого­ворителя 30 Вт в S-90, долговременная мощность более 56 Вт на AC не подавалась.

На частоте 25 Гц при мощности 25 Вт Kr составил 0,02% и 0,12% с вклю­ченным/выключенным узлом компенса­ции, а при мощности 56 Вт — 0,02% и 0,15%.

Заодно была проверена необходимость и эффективность охвата выходного ФНЧ общей ООС. На частоте 25 Гц при мощ­ности 56 Вт и включенном последовательно в один из прово­дов кабеля AC выходного RL-RC ФНЧ, подобного установлен­ному в сверхлинейном УМЗЧ , Kr с выключенным компенса­тором достигает 0,18%. На частоте 30 Гц при мощности 56 Вт Kr 0,02% и 0,06% с включенным/выключенным узлом компен­сации. На частоте 35 Гц при мощности 56 Вт Kr 0,02% и 0,04% с включенным/выключенным узлом компенсации. На частотах 40 и 90 Гц при мощности 56 Вт Kr 0,02% и 0,04% с включен­ным/выключенным узлом компенсации, а на частоте 60 Гц -0,02% и 0,06%.

Выводы очевидны. Наблюдается наличие нелинейных ис­кажений сигнала на клеммах АС. Отчётливо фиксируется ухуд­шение линейности сигнала на клеммах AC с включением её через нескомпенсированное, не охваченное ООС сопротивле­ние ФНЧ, содержащего 70 см сравнительно тонкого провода. Зависимость уровня искажений от подводимой к AC мощнос­ти позволяет предположить, что он зависит от соотношения мощности сигнала и номинальной мощности НЧ-громкогово-рителей АС. Искажения наиболее ярко выражены на частотах вблизи резонансной. Генерируемая динамиками в ответ на воздействие звукового сигнала противоЭДС шунтируется сум­мой выходного сопротивления УМЗЧ и сопротивления прово­дов кабеля АС, поэтому уровень искажений на клеммах AC прямо зависит от сопротивления этих проводов и выходного сопротивления усилителя.

Диффузор плохо демпфированного низкочастотного гром­коговорителя сам по себе излучает призвуки, и, кроме того, этот громкоговоритель генерирует широкий хвост продуктов нелинейных и интермодуляционных искажений, которые вос­производит громкоговоритель среднечастотный. Этим и объяс­няется ухудшение звучания на средних частотах.

Несмотря на принятое вследствие неидеальности ИНИ допущение нулевого уровня Kr в 0,02%, влияние компенсато­ра сопротивления кабелей на искажения сигала на клеммах AC отмечается отчётливо и однозначно. Можно констатиро­вать полное соответствие выводов, сделанных после прослу­шивания работы узла компенсации на музыкальном сигнале, и результатов инструментальных измерений.

Улучшение, явно слышимое при включении кабелечистки, может быть объяснено тем, что с исчезновением искажений на клеммах AC среднечастотный громкоговоритель прекраща­ет воспроизводить всю эту грязь. Видимо, поэтому, за счёт уменьшения или исключения воспроизведения искажений среднечастотным громкоговорителем двухкабельная схема включения АС, т.н. «бивайринг», когда НЧ и СЧ-ВЧ звенья под­ключаются разными кабелями, имеет преимущество в звуке по сравнению с однокабельной схемой. Впрочем, поскольку в двухкабельной схеме искажённый сигнал на клеммах НЧ-сек-ции AC никуда не исчезает, эта схема проигрывает варианту с компесатором по коэффициенту демпирования свободных колебаний диффузора низкочастотного громкоговорителя.

Физику не обманешь, и для приличного звучания недоста­точно получить блестящие показатели на выходе усилителя при активной нагрузке, но необходимо также не потерять линей­ность после доставки сигнала на клеммы АС. В составе хоро­шего усилителя совершенно необходим компенсатор, выпол­ненный по той или иной схеме.

Интегратор.

Также была проверена эффективность и возможности уменьшения погрешности интегратора на DA3. В УМЗЧ BB с ОУ TL071 выходное постоянное напряжение находится в пре­делах 6…9 мВ и уменьшить это напряжение включением до­полнительного резистора в цепь неинвертирующего входа не удалось.

Действие низкочастотных шумов, характерных для ОУ с ПТ-входом, вследствие охвата глубокой ООС через частотноза-висимую цепь R16R13C5C6 проявляется в виде нестабильно­сти выходного напряжения величиной в несколько милливольт, или -60 дБ относительно выходного напряжения при номиналь­ной выходной мощности, на частотах ниже 1 Гц, не воспроиз­водимых АС.

В интернете упоминалось о низком сопротивлении защит­ных диодов VD1…VD4, что, якобы, вносит погрешность в работу интегратора из-за образования делителя (R16+R13)/R VD2|VD4. . Дляпроверки обратного сопротивления защитных диодов была собрана схема рис. 6. Здесь ОУ DA1, включенный по схеме ин­вертирующего усилителя, охва­чен ООС через R2, его выход­ное напряжение пропорцио­нально току в цепи проверяемо­го диода VD2 и защитного ре­зистора R2 с коэффициентом 1 мВ/нА, а сопротивлению цепи R2VD2 — с коэффициентом 1 мВ/15 ГОм. Чтобы исключить влияние аддитивных погрешно­стей ОУ — напряжения смеще­ния и входного тока на результаты измерения тока утечки ди­ода, необходимо вычислить только разность между собствен­ным напряжением на выходе ОУ, измеренным без проверяе­мого диода, и напряжением на выходе ОУ после его установ­ки. Практически разница выходных напряжений ОУ в несколь­ко милливольт даёт значение обратного сопротивления диода порядка десяти — пятнадцати гигаом при обратном напряже­нии 15 В. Очевидно, что ток утечки не станет больше с умень­шением напряжения на диоде до уровня нескольких милли­вольт, характерного для разностного напряжения ОУ интегра­тора и компенсатора.

А вот фотоэффект, свойственный диодам, помещённым в стекляный корпус, действительно приводит к значительному изменению выходного напряжения УМЗЧ. При освещении их лампой накаливания в 60 Вт с расстояния 20 см постоянное напряжение на выходе УМЗЧ возрастало до 20…3O мВ. Хотя вряд ли внутри корпуса усилителя может наблюдаться сходный уровень освещённости, капля краски, нанесённая на эти диоды, устранила зависимость режимов УМЗЧ от освещенности. Согласно результатам симуляции, спад АЧХ УМЗЧ не на­блюдается даже на частоте 1 миллигерц. Но уменьшать посто­янную времени R16R13C5C6 не следует. Фазы переменных напряжений на выходах интегратора и компенсатора проти­воположны, и с уменьшением ёмкости конден­саторов или сопротивления резисторов интег­ратора увеличение его выходного напряжения может ухудшить компенсацию сопротивления кабелей АС.

Сравнение звучания усилителей. Звучание собранного усилителя сравнива­лось со звучанием нескольких зарубежных уси­лителей промышленного производства. Источ­ником служил CD-проигрыватель фирмы «Кем­бридж Аудио», для раскачки и регулировки уровня звука оконечных УМЗЧ применялся предварительный усилитель «Радиотехника УП-001», у «Sugden А21а» и NAD С352 использова­лись штатные органы регулировки.

Первым проверили легендарный, эпатажный и чертовски дорогой английский УМЗЧ «Sugden А21а», работающий в классе А с вы­ходной мощностью 25 Вт. Что примечательно, в сопроводительной документации на усь анг­личане сочли за благо уровень нелинейных ис­кажений не указывать. Дескать, не в искажени­ях дело, а в духовности. «Sugden А21а>» проиг­рал УМЗЧ ВВ-2010 при сопоставимой мощнос­ти как по уровню, так и по чёткости, увереннос­ти, благородству звучания на низких частотах. Это и не удивительно, учитывая особенности его схемотехники: всего лишь двухкаскадный квазисимметричный выходной повторитель на транзисторах одной структуры, собранный по схемотехнике 70-х годов прошлого столетия с относительно высоким выходным сопротивле­нием и включенным на выходе ещё более уве­личивающим полное выходное сопротивление электролитическим конденсатором — это после­днее решение само по себе ухудшает звучание любых усилителей на низких и средних часто­тах. На средних и высоких частотах УМЗЧ BB показал более высокую детализацию, прозрач­ность и отличную проработку сцены, когда пев­цы, инструменты могли быть чётко локализова­ны по звуку. Кстати, к слову о корреляции объективных данных измерений и субъективных впечатлений от звучания: в одной из журналь­ных статей конкурентов Sugden-a его Kr опре­делялся на уровне 0,03% на частоте 10 кГц.

Следующим был тоже английский усили­тель NAD С352. Общее впечатление было тем же: ярко выраженный «ведёрный» звук англи­чанина на НЧ не оставил ему никаких шансов, тогда как работа УМЗЧ BB была признана бе­зукоризненной. В отличие от NADa, звучание которого ассоциировалось с густым кустарни­ком, шерстью, ватой, звучание ВВ-2010 на сред­них и высоких частотах позволяло отчётливо различать голоса исполнителей в общем хоре и инструментов в оркестре. В работе NAD С352 явно выражался эффект лучшей слышимости более голосистого исполнителя, более громко­го инструмента. Как выразился сам хозяин уси­лителя, в звуке УМЗЧ BB вокалисты не «закри-кивали» друг друга, а скрипка не сражалась в силе звука с гитарой или трубой, но все инст­рументы мирно и гармонично «дружили» в об­щем звуковом образе мелодии. На высоких ча­стотах УМЗЧ ВВ-2010, по словам образно мыс­лящих аудиофилов, звучит так, «как будто ри­сует звук тонкой-тонкой кисточкой». Эти эффек­ты можно отнести к разнице в интермодуляци­онных искажениях усилителей.

Звучание УМЗЧ Rotel RB 981 было сходно со звучанием NAD С352, за исключением лучшей работы на низких частотах, всё же УМЗЧ ВВ-2010 в чёткости управления AC на низ­ких частотах, а также прозрачности, деликатности звучания на средних и высоких частотах оставался вне конкуренции.

Самым интересным в плане понимания образа мышления аудиофилов было общее мнение, что, несмотря на превосход­ство над этими тремя УМЗЧ, они привносят в звук «теплоту», чем делают его приятнее, а УМЗЧ BB работает ровно, «к звуку относится нейтрально».

Японский Dual CV1460 проиграл в звуке сразу после вклю­чения самым очевидным для всех образом, и тратить времени на его подробное прослушивание не стали. Его Kr находился в пределах 0,04…0,07% на малой мощности.

Основные впечатления от сравнения усилителей в основ­ных чертах были полностью идентичными: УМЗЧ BB опережал их в звуке безоговорочно и однозначно. Поэтому дальнейшие испытания были признаны излишними. В итоге победила друж­ба, каждый получил желаемое: для тёплого, задушевного зву­чания — Sugden, NAD и Rotel, а чтобы услышать записанное на диск режиссёром — УМЗЧ ВВ-2010.

Лично мне УМЗЧ высокой верности нравится лёгким, чистым, безукоризненным, благородным звучанием, он играючи воспро­изводят пассажи любой сложности. Как выразился мой знако­мый, аудиофил с большим стажем, звуки ударных установок на низких частотах он отрабатывает без вариантов, как пресс, на средних он звучит так, как будто его нет, а на высоких он как будто рисует звук тоненькой кисточкой. Для меня ненапрягающий звук УМЗЧ BB ассоциируется с лёгкостью работы каскадов.

Литература

1. Сухов И. УМЗЧ высокой верности. «Радио», 1989, № 6, стр. 55-57; №7, стр. 57-61.

2. Ридико Л. УМЗЧ BB на современной элементной базе с микроконтроллерной системой управления. «Радиохобби», 2001, №5, стр. 52-57; №6, стр. 50-54; 2002, №2, стр. 53-56.

3. Агеев С. Сверхлинейный УМЗЧ с глубокой ООС «Радио», 1999, №№ 10… 12; «Радио», 2000, №№ 1; 2; 4…6; 9… 11.

4. Зуев. Л. УМЗЧ с параллельной ООС. «Радио», 2005, №2 , стр. 14.

5. Жуковский В. Зачем нужно быстродействие УМЗЧ (или «УМЗЧ ВВ-2008»). «Радиохобби», 2008, №1, стр. 55-59; №2, стр. 49-55.

УМЗЧ ВВС-2011 версия Ultimate

Технические характеристики усилителя:

Большая мощность: 150 Вт/8 Ом
Высокая линейность: 0,0002 – 0,0003% (при 20 кГц 100 Вт /4 Ом)

Полный набор сервисных узлов:

Поддержания нулевого постоянного напряжения
Компенсатора сопротивления проводов АС
Токовая защита
Защита от постоянного напряжения на выходе
Плавный старт

Электрическая схема

Разводкой печатных плат занимался участник многих популярных проектов LepekhinV (Владимир Лепехин). Получилось очень неплохо).

Плата усилителя ВВС-2011

Пуско-защитное устройство

Плата защиты АС усилителя ВВС-2011

Плата усилителя УНЧ ВВС-2011 была разработана под тоннельный продув (параллельно радиатору). Монтаж транзисторов УН (усилителя напряжения) и ВК (выходного каскада) несколько затруднен, т.к. монтаж/демонтаж приходится производить отверткой через отверстия в ПП диаметром около 6 мм. Когда доступ открыт, проекция транзисторов не попадает под ПП, значительно удобней. Пришлось плату немного доработать.

Плата усилителя

Монтажная схема усилителя ВВС-2011

В новых ПП не учел один момент - это удобство настройки защиты на плате усилителя

С25 = 0,1 нФ, R42* = 820 Ом и R41 = 1 кОм. Все элементы смд и находятся со стороны пайки, что весьма не удобно при настройке, т.к. надо будет несколько раз откручивать и прикручивать болтики крепления ПП на стойках и транзисторов к радиаторам.

Предложение : R42* 820 Ом состоит из двух резисторов смд расположенных параллельно, от сюда предложение: один резистор смд запаиваем сразу, другой выводной резистор навесом паяем к VT10 один вывод к базе, другой к эмиттеру, подбираем до подходящего. Подобрали, меняем выводной на смд, для наглядности.

УМЗЧ ВВС-2011 версия Ultimate

УМЗЧ ВВС-2011 версия Ultimate автор схемы Виктор Жуковский г. Красноармейск

Технические характеристики усилителя:
1. Большая мощность: 150 Вт / 8 Ом,
2. Высокая линейность — 0,000.2…0,000.3% при 20 кГц 100 Вт / 4 Ома,
Полный набор сервисных узлов:
1. Поддержания нулевого постоянного напряжения,
2. Компенсатора сопротивления проводов АС,
3. Токовая защита,
4. Защита от постоянного напряжения на выходе,
5. Плавный старт.

УМЗЧ ВВС2011 схема

Разводкой печатных плат занимался участник многих популярных проектов LepekhinV (Владимир Лепехин). Получилось очень неплохо).

УМЗЧ-ВВС2011 плата

Плата усилителя УНЧ ВВС-2011 была разработана под тоннельный продув (параллельно радиатору). Монтаж транзисторов УН (усилителя напряжения) и ВК (выходного каскада) несколько затруднен, т.к. монтаж/демонтаж приходится производить отверткой через отверстия в ПП диаметром около 6 мм. Когда доступ открыт, проекция транзисторов не попадает под ПП, значительно удобней. Пришлось плату немного доработать.

В новых ПП не учел один момент — это удобство настройки защиты на плате усилителя:

С25 0.1n, R42* 820 Ом и R41 1k все элементы смд и находятся со стороны пайки, что весьма не удобно при настройке, т.к. надо будет несколько раз откручивать и прикручивать болтики крепления ПП на стойках и транзисторов к радиаторам. Предложение: R42* 820 состоит из двух резисторов смд расположенных параллельно, от сюда предложение: один резистор смд запаиваем сразу, другой выводной резистор навесом паяем к VT10 один вывод к базе, другой к эмиттеру, подбираем до подходящего. Подобрали, меняем выводной на смд, для наглядности:


Усилитель мощности звуковой частоты (УМЗЧ) высокой верности (ВВ), разработанный в 1989 году Николаем Суховым, уже с полным правом можно назвать легендарным. При его разработке был применен профессиональный подход, основанный на знаниях и опыте в области аналоговой схемотехники. Как результат, параметры этого усилителя оказались настолько высокими, что и на сегодняшний день данная конструкция не потеряла актуальности. В этой статье приводится описание несколько усовершенствованной версии усилителя. Усовершенствования сводятся к использованию новой элементной базы и применению микроконтроллерной системы управления.

Усилитель мощности (УМ) является неотъемлемой частью любого звуковоспроизводящего комплекса. Доступно немало описаний конструкции таких усилителей. Но в подавляющем большинстве случаев, даже при очень хороших характеристиках, наблюдается полное отсутствие сервисных удобств. А ведь в настоящее время, когда получили широкое распространение микроконтроллеры, создать достаточно совершенную систему управления не составляет особого труда. При этом самодельный аппарат по функциональной насыщенности может не уступать лучшим фирменным образцам. Вариант УМЗЧ ВВ с микроконтроллерной системой управления показан на рис. 1:

Рис. 1. Внешний вид усилителя.

Исходная схема УМЗЧ ВВ обладает достаточными параметрами для того, чтобы усилитель не являлся доминирующим источником нелинейности звуковоспроизводящего тракта во всем диапазоне выходных мощностей. Поэтому дальнейшее улучшение характеристик заметных преимуществ уже не дает.

По крайней мере, качество звучания разных фонограмм отличается намного больше, чем качество звучания усилителей. На эту тему можно привести цитату из журнала «Audio» : «Существуют очевидные на слух различия в таких категориях, как акустические системы, микрофоны, LP звукосниматели, комнаты для прослушивания, студийные помещения, концертные залы и, особенно, конфигурации студий и записывающего оборудования, используемые различными записывающими компаниями. Если вы хотите услышать тонкие различия в звуковой сцене, сравните записи John Eargle на Delos с записями Jack Renner на Telarc, а не предварительные усилители. Или если вы хотите услышать тонкие различия в переходах, сравните джазовые записи студии dmp с джазовыми записями студии Chesky, а не два межблочных кабеля. »

Несмотря на этот факт, любителями Hi-End не прекращаются поиски «правильного» звука, которые затрагивают, в том числе, и УМ. На самом деле УМ является примером очень простого линейного тракта. Современный уровень развития схемотехники позволяет обеспечить для такого устройства достаточно высокие параметры, чтобы вносимые искажения стали незаметными. Поэтому на практике два любых современных, неэксцентрично спроектированных УМ звучат одинаково. Наоборот, если УМ имеет какое-то особенное, специфическое звучание, это говорит лишь об одном: вносимые таким УМ искажения велики и хорошо заметны на слух.

Сказанное не значит, что спроектировать высококачественный УМ очень просто. Существует множество тонкостей, как схемотехнического, так и конструктивного плана. Но все эти тонкости давно известны серьезным производителям УМ, и грубых ошибок в конструкциях современных УМ обычно не встречается. Исключение составляют дорогие усилители класса Hi-End, которые зачастую спроектированы очень неграмотно. Даже если вносимые УМ искажения приятны на слух (что утверждают любители ламповых усилителей), это не имеет ничего общего с высокой верностью звуковоспроизведения.

К высококачественному УМ, кроме традиционных требований широкополосности и хорошей линейности, предъявляется еще ряд дополнительных требований. Иногда можно слышать, что для домашнего использования достаточна мощность усилителя 20-35 Вт. Если речь идет о средней мощности, то такое утверждение справедливо. Но реальный музыкальный сигнал может иметь пиковый уровень мощности, превышающий средний уровень в 10-20 раз. Поэтому, чтобы при средней мощности 20 Вт получить неискаженное воспроизведение такого сигнала, необходимо иметь мощность УМ порядка 200 Вт. Вот, например, вывод экспертной оценки для усилителя, описанного в : «Единственным замечанием была недостаточная громкость звучания больших ударных инструментов, что объясняется недостаточной выходной мощностью усилителя (120 Вт в пике на нагрузке 4 Ома). »

Акустические системы (АС) представляют собой комплексную нагрузку и имеют очень сложный характер зависимости полного сопротивления от частоты. На некоторых частотах оно может быть меньше номинального значения в 3 - 4 раза. УМ должен иметь возможность работать без искажений на такую низкоомную нагрузку. Например, если номинальное сопротивление акустической системы составляет 4 ома, то УМ должен нормально работать на нагрузку сопротивлением 1 ом. Это требует очень больших выходных токов, что должно учитываться при проектировании УМ. Описываемый усилитель этим требованиям удовлетворяет.

Последнее время довольно часто обсуждается тема оптимального выходного сопротивления усилителя с точки зрения минимизации искажений АС. Однако эта тема актуальна только при проектировании активных АС. Разделительные фильтры пассивных АС разрабатываются исходя из того, что источник сигнала будет иметь пренебрежимо низкое выходное сопротивление. Если УМ будет иметь высокое выходное сопротивление, то АЧХ таких АС будет сильно искажена. Поэтому ничего другого не остается, как обеспечивать для УМ малое выходное сопротивление.

Можно заметить, что новые разработки УМ идут в основном по пути удешевления, улучшения технологичности конструкции, увеличения выходной мощности, повышения КПД, улучшения потребительских качеств. В данной статье основное внимание уделено сервисным функциям, которые реализованы благодаря микроконтроллерной системе управления.

Усилитель выполнен в корпусе формата MIDI, его габаритные размеры 348x180x270 мм, вес – около 20 кг. Встроенный микроконтроллер позволяет управлять усилителем с помощью ИК пульта ДУ (общего с предварительным усилителем). Кроме того, микроконтроллер осуществляет измерение и индикацию средней и квазипиковой выходной мощности, температуры радиаторов, реализует отключение по таймеру и обрабатывает аварийные ситуации. Система защиты усилителя, а также управление включением и выключением питания реализованы с участием микроконтроллера. Усилитель имеет отдельный дежурный источник питания, что позволяет ему находиться в режиме «STANDBY», когда основные источники питания выключены.

Описываемый усилитель назван NSM (National Sound Machines), модель PA-9000, так как название аппарата составляет часть его дизайна и обязательно должно присутствовать. Реализованный набор сервисных функций в некоторых случаях может оказаться избыточным, для таких ситуаций разработан «минималистский» вариант усилителя (модель PA-2020), который имеет на передней панели только сетевой выключатель и двухцветный светодиод, а встроенный микроконтроллер лишь управляет процессом включения и выключения питания, дополняет систему защиты и обеспечивает дистанционное управление режимом «STANDBY».

Все органы управления и индикации усилителя расположены на передней панели. Ее внешний вид и назначение органов управления приведены на рис. 2:

Рис. 2. Передняя панель усилителя.

1 - светодиод включения внешних потребителей EXT 9 - кнопка «минус »
2 - светодиод включения дежурного питания DUTY 10 - кнопка индикации пиковой мощности PEAK
3 - кнопка перехода в дежурный режим STANDBY 11 - кнопка индикации таймера TIMER
4 - кнопка полного отключения питания POWER 12 - кнопка индикации температуры °C
5 - светодиод включения основного питания MAIN 13 - кнопка «плюс »
6 - светодиод нормального режима работы OPERATE 14 - светодиод аварии левого канала FAIL L
7 - светодиод включения нагрузки LOAD 15 - светодиод аварии правого канала FAIL R
8 - дисплей

Кнопка «POWER» обеспечивает полное отключение усилителя от сети. Физически эта кнопка отключает от сети только дежурный источник питания, соответственно она может быть рассчитана на небольшой ток. Основные источники питания включаются с помощью реле, обмотки которых питаются от дежурного источника. Поэтому при отключенной кнопке «POWER» гарантированно обесточены все схемы усилителя.

При включении кнопки «POWER» усилитель полностью включается. Процесс включения происходит следующим образом: сразу включается дежурный источник, о чем свидетельствует светодиод включения дежурного питания «DUTY». Спустя некоторое время, необходимое для сброса микроконтроллера, включается питание на внешние розетки и зажигается светодиод «EXT». Затем зажигается светодиод «MAIN», и происходит первый этап включения основных источников. Вначале основные трансформаторы включаются через ограничительные резисторы, которые предотвращают начальный бросок тока из-за разряженных конденсаторов фильтра. Конденсаторы постепенно заряжаются, и когда измеренное напряжение питания достигнет установленного порога, ограничительные резисторы исключаются из цепи. При этом зажигается светодиод «OPERATE». Если за отведенное время напряжение питания не достигло установленного порога, то процесс включения усилителя прерывается и включается индикация аварии. Если включение основных источников прошло успешно, то микроконтроллер проверяет состояние системы защиты. В случае отсутствия аварийных ситуаций, микроконтроллер разрешает включение реле нагрузки и зажигается светодиод «LOAD».

Кнопка «STANDBY» осуществляет управление дежурным режимом. Короткое нажатие кнопки переводит усилитель в дежурный режим или, наоборот, включает усилитель. На практике может понадобиться включить внешние розетки, оставив УМ в дежурном режиме. Это требуется, например, при прослушивании фонограмм на стереотелефоны или при перезаписи без звукового контроля. Внешние розетки можно независимо включать-выключать длинным (до звукового сигнала) нажатием кнопки «STANDBY». Вариант, когда УМ включен, а розетки выключены, смысла не имеет, поэтому не реализуется.

На передней панели размещен 4-х разрядный цифровой дисплей и 5 кнопок управления отображением. Дисплей может работать в следующих режимах (рис. 3a):

  • отключен
  • индикация средней выходной мощности [W]
  • индикация квазипиковой выходной мощности
  • индикация состояния таймера [M]
  • индикация температуры радиаторов [°C]
Сразу после включения УМ дисплей отключен, так как в большинстве случаев при эксплуатации УМ он не нужен. Включить дисплей можно нажатием одной из кнопок «PEAK», «TIMER» или «°C».

Рис. 3. Варианты индикации дисплея.

Кнопка «PEAK» включает отображение выходной мощности и переключает режимы средняя/квазипиковая мощность. В режиме индикации выходной мощности на дисплее зажигается «W», а для квазипиковой мощности – еще и «PEAK». Выходная мощность индицируется в ваттах с дискретностью 0.1 ватта. Измерение производится методом перемножения тока и напряжения на нагрузке, поэтому показания действительны для любого допустимого значения сопротивления нагрузки. Удержание кнопки «PEAK» до звукового сигнала выключает дисплей. Выключение дисплея, а также его переключение между разными режимами индикации происходит плавно (одно изображение «перетекает» в другое). Этот эффект реализован программно.

Кнопка «TIMER» выводит на дисплей текущее состояние таймера, при этом зажигается буква «M». Таймер позволяет задавать интервал времени, по истечению которого усилитель переходит в дежурный режим и внешние розетки отключаются. Нужно отметить, что при использовании этой функции другие компоненты комплекса должны допускать отключение питания «на ходу». Для тюнера и CD-плеера это обычно допустимо, а вот у некоторых кассетных дек при отключении питания ЛПМ может не переходить в режим «СТОП». Для таких дек отключение питания во время воспроизведения или записи недопустимо. Однако среди фирменных аппаратов такие деки встречаются крайне редко. Наоборот, у большинства дек есть переключатель «Timer», который имеет 3 положения: «Off», «Record» и «Play», что позволяет простой подачей питания сразу включать режим воспроизведения или записи. Выключать эти режимы также можно простым снятием питания. Таймер усилителя может быть запрограммирован на следующие интервалы (рис. 3b): 5, 15, 30, 45, 60, 90 и 120 минут. Если таймер не используется, его нужно перевести в состояние «OFF». В этом состоянии он находится сразу после включения питания.

Задание интервала таймера осуществляется кнопками «+» и «-» в режиме индикации таймера. Если таймер включен, то на дисплее всегда горит светодиод «TIMER», а включение индикации таймера показывает реальное текущее состояние, т.е. сколько минут осталось до выключения. В такой ситуации интервал можно продлить нажатием кнопки «+».

Кнопка «°C» включает отображение температуры радиаторов, при этом зажигается символ «°C». На каждом радиаторе установлен отдельный термометр, но на дисплей выводится максимальное значение температуры. Эти же термометры используются для управления вентилятором и для температурной защиты выходных транзисторов усилителя.

Для индикации аварии на передней панели расположены два светодиода: «FAIL LEFT» и «FAIL RIGHT». При срабатывании защиты в одном из каналов УМ зажигается соответствующий светодиод, а на дисплее индицируется буквенное наименование причины аварии (рис. 3c). При этом усилитель переходит в дежурный режим. В усилителе реализованы следующие виды защиты:

  • защита от перегрузки по току выходного каскада
  • защита от постоянной составляющей на выходе
  • защита от аварии источника питания
  • защита от пропадания сетевого напряжения
  • защита от перегрева выходных транзисторов
Защита от перегрузки по току реагирует на превышение заданного порога током выходного каскада. Спасает она не только АС, но и выходные транзисторы, например, при коротком замыкании на выходе усилителя. Это защита триггерного типа, после ее срабатывания нормальная работа УМ восстанавливается лишь после его повторного включения. Так как от этой защиты требуется высокое быстродействие, она реализована аппаратно. На дисплее индицируется как «IF».

Реагирует на постоянную составляющую выходного напряжения УМ, большую 2 В. Она защищает АС, реализована также аппаратно. На дисплее индицируется как «dcF».

Реагирует на падение напряжения питания любого плеча ниже заданного уровня. Существенное нарушение симметрии питающих напряжений может вызвать появление на выходе УМ постоянной составляющей, что опасно для АС. На дисплее индицируется как «UF».

Реагирует на выпадение нескольких периодов сетевого напряжения подряд. Предназначение этой защиты – отключить нагрузку до того, как напряжение питания упадет и начнется переходной процесс. Реализована аппаратно, микроконтроллер лишь считывает ее состояние. На дисплее индицируется как «prF».

Защита от перегрева выходных транзисторов реализована программно, она использует информацию с термометров, которые установлены на радиаторах. На дисплее индицируется как «tF».

УМ имеет возможность дистанционного управления . Поскольку не требуется большого количества кнопок управления, используется тот же пульт, что и для управления предварительным усилителем. Этот пульт ДУ работает в стандарте RC-5 и имеет три кнопки , специально предназначенные для управления УМ. Кнопка «STANDBY» полностью дублирует аналогичную кнопку на передней панели. Кнопка «DISPLAY» позволяет переключать режим дисплея по кольцу (рис. 3а). Удержание кнопки «DISPLAY» до звукового сигнала выключает дисплей. Кнопка «MODE» позволяет менять временной интервал таймера (рис. 3b), т.е. она заменяет кнопки «+» и «-».

На задней панели усилителя (рис. 4) установлены розетки, предназначенные для питания других компонентов комплекса. Эти розетки имеют независимое отключение, что позволяет с пульта ДУ обесточить весь комплекс.

Рис. 4. Задняя панель усилителя.

Как уже отмечалось ранее, за основу описываемого усилителя взята схема УМЗЧ ВВ Николая Сухова, которая описана в . Основные принципы построения УМ высокой верности изложены в . Принципиальная схема основной платы усилителя приведена на рис. 5.

width=710>

Рис. 5. Принципиальная схема основной платы усилителя.

По сравнению с оригинальной конструкцией в усилитель были внесены небольшие изменения. Эти изменения не являются принципиальными и представляют собой в основном переход на более новую элементную базу.

Изменена схема температурной стабилизации тока покоя . В оригинальной конструкции вместе с выходными транзисторами на радиаторах был установлен транзистор - датчик температуры, который задавал напряжение смещения выходного каскада. При этом учитывалась температура только выходных транзисторов. Но температура предоконечных транзисторов ввиду довольно большой рассеиваемой на них мощности также значительно повышалась во время работы. По причине того, что эти транзисторы устанавливались на небольших отдельных радиаторах, их температура могла довольно резко колебаться, например, в результате изменения рассеиваемой мощности или даже из-за внешних воздушных потоков. Это приводило к таким же резким колебаниям тока покоя. Да и любой другой элемент УМ может довольно сильно нагреваться во время работы, так как в одном корпусе находятся источники тепла (радиаторы выходных транзисторов, трансформаторы и т.д.). Это относится и к самым первым транзисторам составного эмиттерного повторителя, которые вовсе не имели радиаторов. В результате ток покоя мог возрасти в несколько раз при нагреве УМ. Решение этой проблемы было предложено Алексеем Беловым .

Обычно для температурной стабилизации тока покоя выходного каскады УМ используют следующую схему (рис. 6a):

Рис. 6. Схема температурной стабилизации тока покоя.

Напряжение смещения прикладывается к точкам A и B. Оно выделяется на двухполюснике, который состоит из транзистора VT1 и резисторов R1, R2. Начальное напряжение смещения устанавливают резистором R2. Транзистор VT1 обычно закрепляют на общем с VT6, VT7 радиаторе. Стабилизация осуществляется следующим образом: при нагревании транзисторов VT6, VT7 уменьшается падение база-эмиттер, что при фиксированном напряжении смещения приводит к увеличению тока покоя. Но вместе с этими транзисторами нагревается и VT1, что вызывает уменьшение падения напряжения на двухполюснике, т.е. уменьшение тока покоя. Недостатком такой схемы является то, что температура переходов остальных транзисторов, входящих в составной эмиттерный повторитель, не учитывается. Чтобы ее учесть, температура переходов всех транзисторов должна быть известной. Проще всего ее сделать одинаковой. Для этого достаточно все транзисторы, входящие в составной эмиттерный повторитель, установить на общий радиатор. При этом для получения тока покоя, не зависящего от температуры, напряжение смещения составного эмиттерного повторителя должно иметь температурный коэффициент такой же, как у шести включенных последовательно p-n переходов. Приближенно можно считать, что прямое падение напряжение на p-n переходе линейно уменьшается с коэффициентом K, приблизительно равным 2.3 мВ/°C. У составного эмиттерного повторителя этот коэффициент равен 6*К. Обеспечить такой температурный коэффициент напряжения смещения - задача двухполюсника, который включается между точками A и B. Двухполюсник, показанный на рис. 6a, имеет температурный коэффициент, равный (1+R2/R1)*K. При регулировке резистором R2 тока покоя меняется и температурный коэффициент, что не совсем правильно. Простейшим практическим решением может служить схема, показанная на рис. 6b. В этой схеме температурный коэффициент равен (1+R3/R1)*K, а начальный ток покоя задается положением движка резистора R2. Падение напряжения на резисторе R2, который зашунтирован диодом, можно считать практически постоянным. Поэтому регулировка начального тока покоя не влияет на температурный коэффициент. С такой схемой при нагреве УМ ток покоя изменяется не более, чем на 10-20%. Для того, чтобы все транзисторы составного эмиттерного повторителя можно было разместить на общем радиаторе, они должны иметь корпуса, подходящие для крепления на радиаторе (транзисторы в корпусах TO-92 не подходят). Поэтому в УМ применены другие типы транзисторов, заодно и более современные.

В схеме усилителя (рис. 5) двухполюсник температурной стабилизации тока покоя зашунтирован конденсатором C12. Этот конденсатор не является обязательным, хотя никакого вреда он также не приносит. Дело в том, что между базами транзисторов составного эмиттерного повторителя нужно обеспечить напряжение смещения, которое должно быть постоянным для выбранного тока покоя и не зависеть от усиливаемого сигнала. Короче говоря, переменная составляющая напряжения на двухполюснике, а также на резисторах R26 и R29 (рис. 5) должна быть равна нулю. Поэтому все эти элементы можно зашунтировать конденсаторами. Но ввиду низкого динамического сопротивления двухполюсника, а также низких значений сопротивления этих резисторов наличие шунтирующих емкостей сказывается очень слабо. Поэтому эти емкости не обязательны, тем более что для шунтирования R26 и R29 их номиналы должны быть довольно большими (порядка 1 мкФ и 10 мкФ соответственно).

Выходные транзисторы УМ заменены транзисторами КТ8101А, КТ8102А, которые имеют более высокую граничную частоту коэффициента передачи тока. У мощных транзисторов довольно ярко выражен эффект падения коэффициента передачи тока при росте тока коллектора. Этот эффект является крайне нежелательным для УМ, так как здесь транзисторам приходится работать при больших выходных токах. Модуляция коэффициента передачи тока приводит к значительному ухудшению линейности выходного каскада усилителя. Для уменьшения влияния этого эффекта в выходном каскаде применено параллельное включение двух транзисторов (и это минимум, который можно себе позволить).

При параллельном включении транзисторов для уменьшения влияния разброса их параметров и выравнивания рабочих токов применены раздельные эмиттерные резисторы. Для нормальной работы системы защиты от перегрузок по току добавлена схема выделения максимального значения напряжения на диодах VD9 – VD12 (рис. 5), так как теперь приходится снимать падение не с двух, а с четырех эмиттерных резисторов.

Другие транзисторы составного эмиттерного повторителя - это КТ850А, КТ851А (корпус TO-220) и КТ940А, КТ9115А (корпус TO-126). В схеме стабилизации тока покоя применен составной транзистор КТ973А (корпус TO-126).

Произведена и замена ОУ на более современные. Основной ОУ U1 заменен AD744, который обладает повышенным быстродействием и хорошей линейностью. ОУ U2, который работает в схеме поддержания нулевого потенциала на выходе УМЗЧ, заменен OP177, обладающим низким смещением нуля (не более 15 мкв). Это позволило отказаться от подстроечного резистора регулировки смещения. Нужно отметить, что из-за особенностей схемотехники AD744 ОУ U2 должен обеспечивать выходное напряжение, близкое к напряжению питания (вывод 8 ОУ AD744 по постоянному напряжению отстоит от вывода 4 всего на два p-n перехода). Поэтому не все типы прецизионных ОУ подойдут. В крайнем случае, можно применить «подтягивающий» резистор с выхода ОУ на –15 В. ОУ U3, который работает в схеме компенсации импеданса соединительных проводов АС, заменен AD711. Параметры этого ОУ не столь критичны, поэтому был выбран дешевый ОУ с достаточным быстродействием и довольно низким смещением нуля.

В схему добавлены резисторные делители R49 – R51, R52 – R54 и R47, R48, которые служат для снятия сигналов тока и напряжения для схемы измерения мощности.

Изменена реализация земляных цепей . Поскольку теперь каждый канал усилителя полностью собран на одной плате, отпала необходимость во множественных земляных проводах, которые должны соединяться в одной точке на шасси. Специальная топология печатной платы обеспечивает звездообразную разводку земляных цепей. Звезда земли соединяется одним проводником с общим выводом источника питания. Нужно заметить, что такая топология годится лишь при полностью раздельных источниках питания левого и правого каналов.

В оригинальной схеме усилителя петля обратной связи по переменному току охватывает и контакты реле , которые подключают нагрузку. Эта мера принята для уменьшения влияния нелинейности контактов. Однако при этом возможны проблемы с работой защиты по постоянной составляющей. Дело в том, что при включении усилителя питание подается раньше, чем включается реле нагрузки. В это время на входе УМ может присутствовать сигнал, а коэффициент передачи усилителя вследствие разорванной петли обратной связи очень велик. В таком режиме УМ ограничивает сигнал, а схема компенсации напряжения смещения в общем случае неспособна поддержать на выходе УМ нулевое значение постоянной составляющей. Поэтому еще до подключения нагрузки может обнаружиться, что на выходе УМ присутствует постоянная составляющая, и тогда сработает система защиты. Устранить этот эффект очень просто, если использовать реле с переключающими контактами.

Нормально-замкнутые контакты должны замыкать петлю ООС точно так же, как и нормально-разомкнутые. При этом при срабатывании реле обратная связь оказывается разорванной только на очень короткое время, в течении которого все контакты реле разомкнуты. За это время относительно инерционная защита по постоянной составляющей сработать не успевает. На рис. 7 показан процесс переключения реле, снятый цифровым осциллографом. Как видно, через 4 мс после подачи напряжения на обмотку реле, нормально-замкнутые контакты размыкаются. Примерно еще через 3 мс замыкаются нормально-разомкнутые контакты (с заметным дребезгом, который длится около 0.7 мс). Таким образом, в «полете» контакты находятся примерно 3 мс, именно на это время и будет разорвана обратная связь.

Рис. 7. Процесс переключения реле AJS13113.

Схема защиты полностью переработана (рис. 8). Теперь она размещена на основной плате. Таким образом, каждый канал имеет свою независимую схему. Это несколько избыточно, зато каждая основная плата полностью автономна и представляет собой законченный монофонический усилитель. Часть защитных функций несет микроконтроллер, но для повышения надежности достаточный их набор реализован аппаратно. В принципе, плата усилителя может работать вообще без микроконтроллера. Поскольку УМ имеет отдельный дежурный источник питания, схема защиты питается от него (уровнем +12В). Это делает поведение схемы защиты более предсказуемым при аварии одного из основных источников питания.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните .

Рис. 8. Схема защиты усилителя.

Защита от перегрузки по току включает в себя триггер, собранный на транзисторах VT3, VT4 (рис. 5), который включается при открывании транзистора VT13. VT13 принимает сигнал с датчика тока и открывается при достижении током установленного с помощью подстроечного резистора R30 значения. Триггер выключает генераторы тока VT5, VT6, что приводит к запиранию всех транзисторов составного эмиттерного повторителя. Нулевое напряжение на выходе поддерживается в этом режиме при помощи резистора R27 (рис. 5). Кроме того, состояние триггера считывается через цепочку VD13, R63 (рис. 8), и когда он включается, на входах логического элемента U4D устанавливается низкий логический уровень. Транзистор VT24 обеспечивает выход с открытым коллектором для сигнала IOF (I Out Fail), который опрашивается микроконтроллером.

Защита от постоянной составляющей реализована на транзисторах VT19 – VT22 и логических элементах U4B, U4A. Сигнал с выхода усилителя через делитель R57, R59 поступает на ФНЧ R58C23 с частотой среза около 0.1 Гц, который выделяет постоянную составляющую сигнала. Если появляется постоянная составляющая положительной полярности, то открывается транзистор VT19, включенный по схеме ОЭ. Он, в свою очередь, открывает транзистор VT22, и на входах логического элемента U4B появляется высокий логический уровень. Если появляется постоянная составляющая отрицательной полярности, то открывается транзистор VT21, включенный с ОБ. Такая асимметрия – вынужденная мера, связанная с однополярным питанием схемы защиты. Для того, чтобы повысить коэффициент передачи тока, применено каскодное включение транзисторов VT21, VT20 (ОБ – ОК). Далее, как и в первом случае, открывается транзистор VT22 и т.д. К выходу логического элемента U4A подключен транзистор VT23, который обеспечивает выход с открытым коллектором для сигнала DCF (DC Fail).

Защита от пропадания сетевого напряжения содержит вспомогательный выпрямитель (рис. 13) VD1, VD2 (VD3, VD4), который имеет сглаживающий фильтр с очень маленькой постоянной времени. Если подряд выпадает несколько периодов сетевого напряжения, выходное напряжение выпрямителя падает, и на входах логического элемента U4C (рис. 8) устанавливается низкий логический уровень.

Логические сигналы с трех описанных выше схем защиты поступают на элемент «ИЛИ» U5C, на выходе которого формируется низкий логический уровень в случае срабатывания любой из схем. При этом через диод VD17 разряжается конденсатор C24, и на входах логического элемента U5B (также на выходе U5A) появляется низкий логический уровень. Это приводит к закрыванию транзистора VT27 и отключению реле K1. Цепочка R69C24 обеспечивает некоторую минимальную задержку при включении питания на тот случай, если микроконтроллер по каким-то причинам не сформирует начальную задержку. Транзистор VT25 обеспечивает выход с открытым коллектором для сигнала OKL (OK Left) или OKR (OK Right). Микроконтроллер может запретить включение реле. Для этого установлен транзистор VT26. Эта возможность необходима для реализации программной защиты от перегрева, программной задержки включения реле и для синхронизации работы систем защиты левого и правого каналов.

Взаимодействие микроконтроллера с аппаратной схемой защиты следующее: при включении усилителя, после того, как напряжение питания достигло номинального значения, микроконтроллер опрашивает сигналы готовности аппаратной защиты OKL и OKR. Все это время включение реле запрещено микроконтроллером путем поддержания сигнала ENB (Enable) в состоянии высокого логического уровня. Как только микроконтроллер получает сигналы готовности, он формирует временную задержку и разрешает включение реле. В процессе работы усилителя микроконтроллер все время следит за сигналом готовности. В случае пропадания такого сигнала для одного из каналов, микроконтроллер снимает сигнал ENB, выключая таким образом реле в обоих каналах. Затем он опрашивает сигналы состояния защиты для идентификации канала и вида защиты.

Защита от перегрева реализована полностью программно. В случае перегрева радиаторов микроконтроллер снимает сигнал ENB, что вызывает отключение реле нагрузки. Для измерения температуры на каждом из радиаторов закреплен термометр DS1820 фирмы «Dallas». Срабатывает защита при достижении радиаторами температуры 59.8 °C. Несколько раньше, при температуре 55.0 °C, на дисплее появляется предварительное сообщение о перегреве – автоматически выводится температура радиаторов. Повторное включение усилителя происходит автоматически при остывании радиаторов до 35.0 °C. Включение при более высокой температуре радиаторов возможно только вручную.

Для улучшения условий охлаждения элементов внутри корпуса усилителя используется малогабаритный вентилятор , который расположен на задней панели. Применен вентилятор с бесколлекторным двигателем постоянного тока с номинальным напряжением питания 12 В, предназначенный для охлаждения процессора компьютера. Поскольку при работе вентилятора создается некоторый шум, который может быть заметен в паузах, используется довольно сложный алгоритм управления. При температуре радиаторов 45.0 °C вентилятор начинает работать, а при остывании радиаторов до 35.0 °C вентилятор отключается. При выходной мощности менее 2 Вт работа вентилятора запрещена, чтобы не был заметен его шум. Для предотвращения периодических включений и выключений вентилятора, когда выходная мощность колеблется возле порогового значения, программно ограничено минимальное время выключения вентилятора значением 10 сек. При температуре радиаторов 55.0 °C и выше вентилятор работает без выключений, так как такая температура близка к аварийной. Если при работе усилителя вентилятор включился, то при входе в режим «STANDBY», если температура радиаторов выше 35.0 °C, вентилятор продолжает работать даже при нулевой выходной мощности. Это позволяет быстро охладить усилитель.

Защита от аварии источника питания также реализована полностью программно. Микроконтроллер с помощью АЦП следит за напряжениями питания обоих каналов усилителя. Это напряжение поступает на процессор с основных плат через резисторы R55, R56 (рис. 8).

Включение основных источников питания осуществляется ступенчато. Это необходимо по той причине, что нагрузкой выпрямителей являются полностью разряженные конденсаторы фильтров, и при резком включении будет иметь место сильный бросок тока. Этот бросок представляет опасность для диодов выпрямителя и может привести к сгоранию предохранителей. Поэтому при включении усилителя сначала замыкается реле K2 (рис. 12), и трансформаторы подключаются к сети через ограничительные резисторы R1 и R2. В это время порог для измеренных напряжений питания программно устанавливается равным ±38 В. Если этот порог напряжения не будет достигнут за установленное время, то процесс включения прерывается. Это может иметь место в том случае, если потребляемый схемой усилителя ток существенно повышен (усилитель поврежден). В этом случае включается индикация аварии источников питания «UF».

Если порог ±38 В достигнут, то срабатывает реле K3 (рис. 12), которое исключает резисторы из первичных цепей основных трансформаторов. Затем порог снижается до ±20 В, а микроконтроллер продолжает следить за напряжениями питания. Если во время работы усилителя напряжение питания падает ниже ±20 В, срабатывает защита и усилитель отключается. Снижение порога в нормальном режиме работы необходимо для того, чтобы при «просадках» напряжения питания под нагрузкой не происходило ложное срабатывание защиты.

Принципиальная схема платы процессора приведена на рис. 9. Основой процессора является микроконтроллер U1 типа AT89C51 фирмы «Atmel», который работает на тактовой частоте 12 МГц. Для повышения надежности системы применен супервизор U2, который имеет встроенный сторожевой таймер и монитор питания. Для сброса сторожевого таймера используется отдельная линия WD, на которой программно формируется периодический сигнал. Программа построена таким образом, что этот сигнал будет присутствовать только в том случае, если выполняется обработчик прерывания таймера и основной цикл программы. В противном случае сторожевой таймер выполнит перезапуск микроконтроллера.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните .

Рис. 9. Принципиальная схема платы процессора.

Дисплей связан с процессором с помощью 8-разрядной шины (разъемы XP4 - XP6). Для стробирования регистров платы дисплея используются сигналы C0..C4, которые вырабатываются дешифратором адреса U4. Регистр U3 является защелкой младшего байта адреса, используются только разряды A0, A1, A2. Старший байт адреса вообще не используется, что позволило освободить порт P2 для других целей.

При нажатии на кнопки управления программно генерируются звуковые сигналы. Для этого используется линия BPR, к которой подключен транзисторный ключ VT1, нагруженный на динамический излучатель HA1.

Основные платы левого и правого каналов подключаются к плате процессора с помощью разъемов XP1 и XP2 соответственно. Через эти разъемы на процессор подаются сигналы состояния системы защиты от перегрузки по току IOF и защиты от постоянной составляющей на выходе усилителя DCF. Эти сигналы общие для левого и правого каналов, их объединение возможно благодаря выходам схемы защиты с открытыми коллекторами. Сигналы готовности системы защиты OKL и OKR являются раздельными по каналам, чтобы процессор мог идентифицировать канал, в котором сработала схема защиты. Сигнал ENB, который поступает с процессора на систему защиты, разрешает включение реле нагрузки. Этот сигнал общий для двух каналов, что автоматически синхронизирует работу двух реле.

Линии TRR и TRL используются для чтения термометров, установленных на радиаторах правого и левого канала соответственно. Измеренная термометрами температура может индицироваться на дисплее, если включен соответствующий режим индикации. Индицируется максимальное значение температуры из двух для левого и правого каналов. Измеренное значение также используется для программной реализации защиты от перегрева.

Дополнительно на разъемах XP1 и XP2 есть сигналы WUR, WIR, WUL и WIL, которые используются схемой измерения выходной мощности.

Питается плата процессора от дежурного источника через разъем XP3. Для питания используются 4 уровня: ±15 В, +12 В и +5 В. Уровни ±15 В отключаются при переходе в дежурный режим, а остальные уровни присутствуют всегда. Потребление от уровней +5 В и +12 В в дежурном режиме минимизировано за счет программного отключения основных потребителей. Кроме того, через этот разъем на дежурный источник питания поступают несколько управляющих логических сигналов: PEN - управляет дежурным источником питания, REX - включает реле внешних розеток, RP1 и RP2 - включают реле основного источника питания, FAN - включает вентилятор. Питание схем защиты, которые расположены на основных платах, осуществляется от платы процессора уровнем +12 В, а питания платы дисплея - уровнем +5 В.

Для измерения выходной мощности и для контроля за напряжениями питания используется 12-разрядный АЦП U6 типа AD7896 фирмы «Analog Devices». Одного канала АЦП недостаточно, поэтому на входе применен коммутатор U5 (еще лучше было бы применить 8-канальный АЦП, например, типа AD7888). Данные считываются из АЦП в последовательном виде. Для этого используются линии SDATA (последовательные данные) и SCLK (тактовый сигнал). Запуск процесса преобразования производится программно сигналом START. В качестве опорного источника и одновременно стабилизатора напряжения питания АЦП использован REF195 (U7). Поскольку в дежурном режиме напряжение питания ±15 В отключается, все логические сигналы подключены к АЦП через резисторы R9 - R11, которые ограничивают возможные броски тока при переходе в дежурный режим и обратно.

Из восьми входов коммутатора используются шесть: два для измерения мощности, четыре для контроля за напряжениями питания. Нужный канал выбирается с помощью адресных линий AX0, AX1, AX2.

Рассмотрим схему измерения мощности левого канала. Примененная схема обеспечивает перемножение тока и напряжения нагрузки, поэтому импеданс нагрузки автоматически учитывается и показания всегда соответствуют реальной активной мощности в нагрузке. Через резисторные делители R49 - R54, расположенные на основной плате (рис. 5), напряжение с датчиков тока (эмиттерных резисторов выходных транзисторов) поступает на дифференциальный усилитель U8A (рис. 9), который выделяет сигнал тока. С выхода U8A через подстроечный резистор R17 сигнал поступает на вход Y аналогового перемножителя U9 типа К525ПС2. Сигнал напряжения просто снимается с делителя и поступает на вход X аналогового перемножителя. На выходе перемножителя установлен ФНЧ R18C13, который выделяет сигнал, пропорциональный квазипиковой выходной мощности с временем интегрирования около 10 мс. Этот сигнал поступает на один из входов коммутатора, далее на АЦП. Диод VD1 защищает вход коммутатора от отрицательного напряжения.

Для того, чтобы скомпенсировать начальное смещения нуля перемножителей, при включении усилителя (когда еще реле нагрузки не включено, и выходная мощность равна нулю) происходит процесс автокалибровки нуля. Измеренное напряжение смещения при дальнейшей работе вычитается из показаний АЦП.

Мощность в левом и правом каналах измеряется отдельно, а индицируется максимальное значение по каналам. Поскольку на индикаторе должна отображаться как квазипиковая, так и средняя выходная мощность, а также индицируемые значения должны быть удобными для восприятия, измеренные с помощью АЦП значения подвергаются программной обработке. Временные характеристики измерителя уровня мощности характеризуются временем интегрирования и временем обратного хода. Для измерителя квазипиковой мощности время интегрирования задано аппаратной цепочкой фильтрации и составляет примерно 10 мс. Измеритель средней мощности отличается только повышенным временем интегрирования, что реализовано программно. При вычислении средней мощности используется скользящее среднее по 256 точкам. Время обратного хода в обоих случаях задано программно. Для удобства считывания показаний это время должно быть относительно большим. В данном случае обратный ход индикатора реализуется путем вычитания 1/16 кода текущей мощности один раз в 20 мс. Кроме того, при индикации осуществляется удержание пиковых значений в течении 1.4 сек. Поскольку слишком частое обновление показаний индикатора плохо воспринимается, обновление происходит каждые 320 мс. Для того, чтобы не пропустить очередной пик и отобразить его синхронно со входным сигналом, при обнаружении пика происходит внеочередное обновление показаний.

Как было сказано выше, УМ использует общий с предварительным усилителем пульт дистанционного управления , который работает в стандарте RC-5. Приемник системы дистанционного управления типа SFH-506 расположен на плате дисплея. С выхода фотоприемника сигнал поступает на вход SER (INT1) микроконтроллера. Декодирование кода RC-5 осуществляется программно. Номер используемой системы - 0AH, кнопка «STANDBY» имеет код 0CH, кнопка «DISPLAY» - 21H, кнопка «MODE» - 20H. При необходимости эти коды можно без труда изменить, так как используется перекодировочная таблица, которую можно найти в конце исходного текста программы микроконтроллера.

На плате дисплея (рис. 10) установлены два двухразрядных семисегментных индикатора HG1 и HG2 типа LTD6610E. Они управляются параллельными регистрами U1 – U4. Динамическая индикация не используется, так как это может вызвать повышенный уровень помех.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните .

Рис. 10. Принципиальная схема платы индикации.

Регистр U5 служит для управления светодиодами. Последовательно с каждым сегментом и с каждым светодиодом включен ограничительный резистор. Входы OC всех регистров объединены и подключены к сигналу PEN микроконтроллера. Во время сброса и инициализации регистров этот сигнал находится в состоянии высокого логического уровня. Это предотвращает случайное зажигание индикации при переходных процессах.

На плате дисплея также установлены кнопки управления SB1 – SB6. Они подключены к линиям шины данных и к линии возврата RET. Диоды VD1 – VD6 предотвращают короткое замыкание линий данных при одновременном нажатии двух и более кнопок. При сканировании клавиатуры микроконтроллер использует порт P0 как простой порт вывода, формируя на его линиях бегущий ноль. Одновременно опрашивается линия RET. Таким образом определяется код нажатой кнопки.

Рядом с индикаторами под общим защитным стеклом установлен интегральный фотоприемник дистанционного управления U6. Сигнал с выхода фотоприемника через разъем XP6 поступает на вход микроконтроллера SER (INT1).

Дежурный источник (рис. 11) обеспечивает на выходе 4 уровня: +5 В, +12 В и ±15 В. Уровни ±15 В в дежурном режиме отключаются. В источнике применен небольшой тороидальный трансформатор, намотанный на сердечнике 50x20x25 мм. Дежурный трансформатор имеет большой запас по мощности, а также число витков на вольт выбрано больше расчетного. Благодаря этим мерам трансформатор практически не нагревается, что повышает его надежность (он ведь должен работать непрерывно в течение всего срока службы усилителя). Намоточные данные и диаметр провода указаны на схеме. Стабилизаторы напряжения особенностей не имеют. Микросхемы стабилизаторов U1 и U2 установлены на небольшом общем радиаторе. Для выключения уровней ±15 В используются ключи на транзисторах VT1 – VT4, которые управляются сигналом PEN, поступающим с платы процессора.

Рис. 11. Принципиальная схема платы дежурного источника питания.

Кроме стабилизаторов напряжения, на плате дежурного источника питания установлены ключи на транзисторах VT5 – VT12 для управления реле и вентилятором. Поскольку у микроконтроллеров семейства MCS-51 во время действия сигнала «Сброс» порты находятся в состоянии высокого логического уровня, все исполнительные устройства должны включаться низким уровнем. Иначе будут ложные срабатывания в момент включения питания или в случае срабатывания сторожевого таймера. По этой причине в качестве ключей нельзя применять одиночные n-p-n транзисторы с ОЭ или микросхемы драйверов ULN2003 и подобные.

Реле, предохранители и ограничительные резисторы расположены на плате реле (рис. 12). Подключение всех сетевых проводов производится через винтовые клеммники. Каждый основной трансформатор, дежурный трансформатор и блок внешних розеток имеют раздельные предохранители. В целях безопасности внешние розетки отключаются двумя группами контактов реле K1, которые разрывают оба провода. Основные трансформаторы имеют отвод от середины первичной обмотки. Этот отвод может быть использован для получения напряжения 110 В для питания других компонентов комплекса. Аппараты, соответствующие американскому стандарту, стоят несколько дешевле, чем мультисистемные, поэтому они иногда встречаются и на нашей территории. На плате реле предусмотрены точки, откуда можно снять 110 В, но в базовом варианте это напряжение не используется.

Рис. 12. Принципиальная схема платы реле.

Схема соединений блоков на шасси усилителя показана на рис. 13. К вторичным обмоткам основных трансформаторов T1 и T2 подключены мостовые выпрямители, собранные на диодах VD5 - VD12 типа КД2997А. К выходу выпрямителей подключены конденсаторы фильтра суммарной емкостью более 100 000 мкФ. Такая высокая емкость конденсаторов необходима для того, чтобы получить низкий уровень пульсаций и улучшить способность усилителя воспроизводить импульсные сигналы. С конденсаторов фильтра питающее напряжение ±45 В подается на основные платы усилителя. Дополнительно имеются маломощные выпрямители, собранные на диодах VD1 - VD4, выходное напряжение которых фильтруется с относительно небольшой постоянной времени конденсаторами C1 и C2. Через резисторы R1 и R2 выходное напряжение этих вспомогательных выпрямителей подается на схемы защиты, которые собраны на основных платах усилителя. При выпадении нескольких полупериодов сетевого напряжения выходное напряжение вспомогательных выпрямителей падает, что обнаруживается схемами защиты, и реле нагрузки отключаются. В это время выходное напряжение основных выпрямителей еще достаточно большое за счет конденсаторов большой емкости, поэтому переходной процесс в усилителе при подключенной нагрузке не начинается.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните .

Рис. 13. Схема соединения блоков усилителя.

Для усилителя мощности конструкция и компоновка не менее важна, чем схемотехника. Основная проблема заключается в том, что для выходных транзисторов требуется обеспечить эффективный теплоотвод. При естественном способе охлаждения это выливается в массивные радиаторы, которые становятся чуть ли не основными элементами конструкции. Распространенная компоновка, когда задняя стенка служит одновременно радиатором, не подходит, так как тогда сзади не остается места для установки необходимых клемм и разъемов. Поэтому в описываемом УМ была выбрана компоновка с боковым расположением радиаторов (рис. 14):

Рис. 14. Общая компоновка усилителя.

Радиаторы несколько приподняты (это хорошо видно на рис. 4), благодаря чему обеспечивается их лучшее охлаждение. Основные платы усилителя закреплены параллельно радиаторам. Это минимизирует длину проводников между платой и выходными транзисторами. Еще одни габаритные элементы усилителя - сетевые трансформаторы. В данном случае применены два тороидальных трансформатора, которые установлены друг на друге в общем экране цилиндрической формы. Этот экран занимает значительную часть внутреннего объема корпуса усилителя. Основные выпрямители установлены на общем радиаторе, который расположен вертикально сзади экрана трансформаторов. Конденсаторы фильтра размещены снизу шасси усилителя и закрыты поддоном. Там же размещена плата реле. Дежурный источник питания закреплен на специальном кронштейне возле задней панели. Платы процессора и дисплея размещены в толще передней панели, которая имеет коробчатое сечение.

При разработке конструкции усилителя большое внимание было уделено технологичности конструкции и удобству доступа к любому узлу. Более подробно с компоновкой усилителя можно ознакомиться на рис. 15 и 18:

Рис. 15. Расположение узлов усилителя в собранном виде.

Основой корпуса усилителя является шасси из алюминиевого сплава Д16Т толщиной 4мм (4 на рис. 18). К шасси прикреплены радиаторы (1 на рис. 18) которые выфрезерованы из алюминиевой плиты или отливки. Необходимая площадь радиаторов сильно зависит от условий эксплуатации усилителя, но она не должна быть меньше 2000см 2 . Для облегчения доступа к платам усилителя радиаторы закреплены на шасси с помощью петель (10 на рис. 18), что позволяет радиаторы откидывать. Для того, чтобы этому не мешали провода входных и выходных разъемов, задняя панель разбита на три части (рис. 4). Средняя часть закреплена с помощью кронштейна на шасси, а две боковых части закреплены на радиаторах. Разъемы установлены на боковых частях панели, которые откидываются вместе с радиаторами. Таким образом, радиатор в сборе представляет собой монофонический УМ, который подключается только проводами питания и плоским кабелем управления. На рис. 18 радиаторы для наглядности откинуты лишь частично, и задняя панель не разобрана.

Основные платы усилителя закреплены на радиаторах также с помощью петель (12 на рис. 18), что позволяет их откидывать, получая доступ к стороне пайки. Ось поворота платы проходит по линии отверстий для подключения проводов выходных транзисторов. Это позволило практически не увеличивать длину этих проводов при одновременной возможности откинуть плату. Верхние точки крепления плат представляют собой обычные резьбовые стойки высотой 15мм. Разводка односторонних основных плат левого и правого канала выполнена зеркально (рис. 16), что позволило оптимизировать соединения. Естественно, зеркальность топологии не полная, так как применяются элементы, которые нельзя просто расположить зеркально (микросхемы и реле). Рисунок дает примерное представление о топологии плат, топология всех плат доступна в архиве (см. секцию Download) в виде файлов в формате PCAD 4.5.

width=710>
Рисунок не помещается на странице и поэтому сжат!
Для того, чтобы просмотреть его полностью, щелкните .

Рис. 16. Разводка основных плат усилителя.

На каждом радиаторе 1 (рис. 17) имеется гладкая поверхность 2, которая обработана после чернения. На ней через керамические прокладки 2 установлено по девять транзисторов 4.

Рис. 17. Конструкция радиаторов:

Проведенные исследования показали, что слюда, а тем более современные эластичные прокладки, не обладают достаточной теплопроводностью. Лучшим материалом для изолирующих прокладок является керамика на основе BeO. Однако для транзисторов в пластмассовых корпусах такие прокладки почти не встречаются. Довольно хорошие результаты удалось получить, изготовив прокладки из подложек гибридных микросхем. Это керамика розового цвета (к сожалению, материал точно не известен, скорее всего, что-то на основе Al 2 O 3). Для сравнения теплопроводности разных прокладок был собран стенд, в котором на радиаторе были закреплены два одинаковых транзистора в корпусе TO-220: один непосредственно, другой – через исследуемую прокладку. Ток базы у обоих транзисторов был один и тот же. Транзистор на прокладке рассеивал мощность порядка 20Вт, а другой транзистор мощности не рассеивал (на коллектор не подавалось напряжение). Измерялась разность падений Б-Э у двух транзисторов, и по этой разности вычислялась разность температур переходов. Для всех прокладок использовалась теплопроводящая паста, без нее результаты были худшими и нестабильными. Результаты сравнения представлены в таблице:

Выходные транзисторы прижаты накладками 5, остальные транзисторы крепятся с помощью винтов. Это не очень удобно, так как требуется сверление керамических прокладок, что удается сделать только с помощью алмазных сверл, да и то с большим трудом.

Рядом с транзисторами установлен термометр 9. Как показал опыт, при креплении термометров DS1820 на их корпус нельзя оказывать большого давления, иначе показания искажаются, причем весьма значительно (лучше вообще термометры приклеить с помощью клея, обладающего высокой теплопроводностью).

Под транзисторами на радиаторе закреплена плата 6. На обратной стороне этой платы проводники отсутствуют, поэтому ее можно крепить прямо на поверхность радиатора. Выводы всех транзисторов припаивают к площадкам на верхней стороне платы. Соединения платы с основной платой выполнены короткими проводами, которые впаяны в пустотелые заклепки 7. Для того, чтобы заклепки не замыкали на радиатор, в нем сделано углубление 8.

Основные тороидальные трансформаторы (7 на рис. 18) через эластичные прокладки установлены друг на друге. Для уменьшения наводок со стороны трансформаторов на другую аппаратуру (кассетную деку, например), рекомендуется трансформаторы поместить в экран из отожженной стали толщиной не менее 1.5мм. Экран представляет собой стальной цилиндр и две крышки, стянутые шпилькой. Чтобы избежать появления короткозамкнутого витка, верхняя крышка имеет диэлектрическую втулку. Однако, если предполагается эксплуатировать УМ на большой средней мощности, то следует предусмотреть в экране вентиляционные отверстия или вовсе отказаться от экрана. Казалось бы, для взаимной компенсации полей рассеяния трансформаторов достаточно просто включить их первичные обмотки противофазно. Но на практике это мера очень неэффективна. Поле рассеяния тороидального трансформатора, при кажущейся его осевой симметрии, имеет очень сложное пространственное распределение. Поэтому переполюсовка одной из первичных обмоток приводит к ослаблению поля рассеяния в одной точке пространства, но к усилению в другой. Кроме того, конфигурация поля рассеяния существенно зависит от нагрузки трансформатора.

Рис. 18. Основные узлы усилителя:

1 - радиаторы 12 - петля крепления платы
2 - основные платы усилителя 13 - стойка крепления платы
3 - площадка на радиаторе для установки транзисторов 14 - разъем кабеля управления (с платы процессора)
4 - несущая плита 15 - провод с выхода доп. выпрямителя
5 - несущая плита передней панели 16 - дежурный трансформатор в экране
6 - передняя панель коробчатого сечения 17 - плата дежурного источника питания
7 - основные трансформаторы в экране 18 - радиатор стабилизаторов напряжения
8 - радиатор диодов выпрямителя 19 - провода управления блоком реле
9 - подвод питания к платам 20 - задняя панель
10 - крепление радиаторов на петлях 21 - выходные клеммы
11 - кронштейн крепления радиатора 22 - входные разъемы

К трансформатору питания УМ предъявляются очень жесткие требования. Это связано с тем, что он нагружен на выпрямитель с конденсаторами фильтра очень большой емкости. Это приводит к тому, что потребляемый от вторичной обмотки трансформатора ток носит импульсный характер, причем значение тока в импульсе во много раз превышает средний потребляемый ток. Чтобы потери в трансформаторе оставались низкими, обмотки должны иметь очень малое активное сопротивление. Другими словами, трансформатор должен быть рассчитан на значительно большую мощность, чем в среднем от него потребляется. В описываемом усилители применены два тороидальных трансформатора, каждый из которых намотан на сердечнике 110x60x40 мм из стальной ленты Э-380. Первичные обмотки содержат 2x440

УМЗЧ ВВ с микроконтроллерной системой управления
Просмотров сегодня: 32347, всего: 32347