Драйвера на светодиодное освещение своими руками. Как подобрать и установить светодиодный драйвер своими руками. Как подобрать драйвер для светодиодов. Способы подключения LED

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом . Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как ).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример:
Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит - то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт - оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА - это ходовые. Других вариантов довольно много.
По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать "вполсилы", и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА.
Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока "жизни" светодиодных ламп работающих например на 500-600 мА токе.
Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему - см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Гарантией яркости свечения, эффективности и долговечности LED-источников является правильное питание, которое могут обеспечить специальные электронные устройства - драйверы для светодиодов. Они преобразуют напряжение переменного тока в сети 220В в напряжение постоянного тока заданного значения. Разобраться в том, какую функцию выполняют преобразователи и на что обратить внимание при их выборе, поможет анализ основных видов и характеристик устройств.

Основной функцией драйвера для светодиодов является обеспечение стабилизированного тока, проходящего через LED-прибор. Значение тока, протекающего через кристалл полупроводника, должно соответствовать паспортным параметрам светодиода. Это обеспечит устойчивость свечения кристалла и поможет избежать его преждевременной деградации. Кроме того при заданном токе падение напряжения будет соответствовать величине, необходимой для p-n перехода. Узнать соответствующее напряжение питания светодиода можно воспользовавшись вольт-амперной характеристикой.

При освещении жилых и офисных помещений светодиодными лампами и светильниками применяют драйверы, питание которых обеспечивается от сети переменного тока 220В. В автомобильном освещении (фары, ДХО и пр.), велосипедных фарах, портативных фонарях используют источники питания постоянного напряжения в диапазоне от 9 до 36В. Некоторые светодиоды небольшой мощности можно подключать без драйвера, но тогда в схему включения светодиода в сеть 220 вольт должен быть внесен резистор.

Напряжение драйвера на выходе указывается в интервале двух конечных значений, между которыми обеспечивается стабильное функционирование. Существуют адаптеры с интервалом от 3В до нескольких десятков. Чтобы запитать схему из 3-х последовательно соединенных светодиодов белого цвета, каждый из которых имеет мощность 1 Вт, потребуется драйвер с выходными значениями U – 9-12В, I – 350 мА. Падение напряжения для каждого кристалла составит около 3,3В, а в общей сумме 9,9В, что войдет в диапазон драйвера.

Основные характеристики преобразователей

Перед тем как купить драйвер для светодиодов, следует ознакомиться с основными характеристиками устройств. К ним относят напряжение на выходе, номинальный ток и мощность. Выходное напряжение преобразователя зависит от величины падения напряжения на LED-источнике, а также от способа подключения и количества светодиодов в схеме. Ток находится в зависимости от мощности и яркости излучающих диодов. Драйвер должен обеспечить светодиодам такой ток, который необходим им для поддержки требуемой яркости.

Одной из важных характеристик драйвера считается мощность, которую прибор выдает в виде нагрузки. На выбор мощности драйвера влияет мощность каждого LED-прибора, общее количество и цвет свечения светодиодов. Алгоритм расчета мощности состоит в том, что максимальная мощность устройства не должна быть ниже потребления всех светодиодов:

P = P(led) × n ,

где P(led) – мощность единичного LED-источника, а n - количество светодиодов.

Кроме того должно выполняться обязательное условие, при котором бы обеспечивался запас мощности в пределах 25-30%. Таким образом значение максимальной мощности должно быть не меньше значения (1,3 х P).

Следует также брать во внимание цветовые характеристики светодиодов. Ведь различные по цвету полупроводниковые кристаллы имеют разную величину падения напряжения при прохождении через них тока одинаковой силы. Так падение напряжения у красного светодиода при токе 350 мА составляет 1,9-2,4В, тогда среднее значение его мощности будет равно 0,75 Вт. У аналога зеленого цвета величина падения напряжения находится в пределах от 3,3 до 3,9В и при таком же токе мощность составит уже 1,25 Вт. Значит к драйверу для светодиодов 12В можно подсоединить 16 красных LED-источников или 9 зеленых.

Полезный совет! При выборе драйвера для светодиодов специалисты советуют не пренебрегать максимальным значением мощности прибора.

Какими бывают драйверы для светодиодов по типу устройства

Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом. Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале. Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.

Импульсные устройства создают в выходном канале ряд высокочастотных импульсов. Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений. Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.

Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций. Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания. Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.

Полезный совет! Приобретать LED-драйвер следует на этапе выбора светодиодных источников, предварительно определившись со схемой светодиодов от 220 вольт.

Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов. Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка. Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

Схемы драйверов для светодиодов

Многие производители выпускают для светодиодов микросхемы драйверов, позволяющие запитывать источники от пониженного напряжения. Все существующие драйверы делят на простые, выполненные на базе от 1-3 транзисторов и более сложные с использованием специальных микросхем с широтно-импульсной модуляцией.

Компания ON Semiconductor предлагает в качестве основы для драйверов широкий выбор микросхем. Они отличаются приемлемой стоимостью, отличной эффективностью преобразования, экономичностью и низким уровнем электромагнитных импульсов. Производителем представлен драйвер импульсного типа UC3845 с величиной тока на выходе до 1А. На такой микросхеме можно реализовать схему драйвера для светодиода 10W.

Электронные компоненты HV9910 (Supertex) являются популярной микросхемой для драйверов, благодаря простому схемному разрешению и невысокой цене. Она имеет встроенный регулятор напряжения и выводы для осуществления управления яркостью, а также вывод для программирования частоты переключений. Выходное значение тока составляет до 0,01А. На данной микросхеме возможно воплотить простой драйвер для светодиодов.

На базе микросхемы UCC28810 (пр-во компании Texas Instruments) можно создать схему драйвера для мощных светодиодов. В такой схеме LED-драйвера может создаваться выходное напряжение величиной 70-85В для светодиодных модулей, состоящих из 28 LED-источников током 3 А.

Полезный совет! Если вы планируете купить сверхяркие светодиоды мощностью 10 Вт, для конструкций из них можно использовать импульсный драйвер на микросхеме UCC28810.

Компания Clare предлагает создание простого драйвера импульсного типа на основе микросхемы CPC 9909. Она включает контроллер преобразователя, размещенного в компактном корпусе. За счет встроенного стабилизатора напряжения допускается питание преобразователя от напряжения 8-550В. Микросхема CPC 9909 позволяет эксплуатировать драйвер в условиях широкого разброса температурных режимов от -50 до 80°С.

Как подобрать драйвер для светодиодов

На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой. Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам. Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной. В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера. Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию. Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

  • драйвер от сомнительных производителей – не более 20 тыс. часов;
  • устройства среднего качества – около 50 тыс. часов;
  • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.

Полезный совет! Какого качества будет светодиодный драйвер – выбирать вам. Однако следует заметить, что особенно важно приобретать фирменный преобразователь, если речь идет о применении его для прожекторов из светодиодов и мощных светильников.

Расчет драйверов для светодиодов

Чтобы определить напряжение на выходе светодиодного драйвера, необходимо рассчитать отношение мощности (Вт) к значению тока (А). К примеру, драйвер имеет следующие характеристики: мощность 3 Вт и ток 0,3 А. Расчетное отношение составляет 10В. Таким образом, это будет максимальная величина выходного напряжения данного преобразователя.

Статья по теме:


Типы. Схемы подключения LED-источников. Расчет сопротивления для светодиодов. Проверка светодиода мультиметром. LED-конструкции своими руками.

Если необходимо подключить 3 LED-источника, ток каждого из которых составляет 0,3 мА при напряжении питания 3В. Подключая к светодиодному драйверу один из приборов, то выходное напряжение будет равно 3В и ток 0,3 А. Собрав последовательно два LED-источника, выходное напряжение будет равно 6В и ток 0,3 А. Добавив в последовательную цепочку третий светодиод, получим 9В и 0,3 А. При параллельном соединении 0,3 А одинаково распределятся между светодиодами по 0,1 А. Подключая светодиоды к устройству на 0,3 А при значении тока 0,7, им достанется всего 0,3 А.

Таков алгоритм функционирования светодиодных драйверов. Они выдают такое количество тока, на которое они рассчитаны. Способ подключения LED-приборов в этом случае не играет роли. Есть модели драйверов, предполагающие любое количество подключаемых к ним светодиодов. Но тогда существует ограничение по мощности LED-источников: она не должна превышать мощность самого драйвера. Выпускаются драйверы, рассчитанные на определенное число подключаемых светодиодов К ним разрешается подключить меньшее количество светодиодов. Но такие драйверы имеют низкую эффективность, в отличие от устройств, рассчитанных на конкретное количество LED-приборов.

Следует отметить, что у драйверов, рассчитанных на фиксированное количество излучающих диодов, предусмотрена защита от аварийных ситуаций. Такие преобразователи некорректно работают, если к ним подключить меньшее число светодиодов: они будут мерцать или вообще не будут светиться. Таким образом, если подключить к драйверу напряжение без соответствующей нагрузки, он будет работать нестабильно.

Где купить драйверы для светодиодов

Купить LED-driver можно в специализированных точках по продаже радиодеталей. Кроме того гораздо удобней ознакомиться с продукцией и заказать необходимое изделие, используя каталоги соответствующих сайтов. Помимо этого в интернет-магазинах можно приобрести не только преобразователи, а также приборы светодиодного освещения и сопутствующую продукцию: , устройства управления, средства подключения, электронные компоненты для ремонта и сборки драйвера для светодиодов своими руками.

Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах. Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта. В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов. Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети. Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

Модификация LD DC/AC 12 V Габариты, мм (в/ш/г) Выходной ток, A Мощность, W Цена, руб.
1x1W 3-4VDC 0.3A MR11 8/25/12 0,3 1х1 73
3x1W 9-12VDC 0.3A MR11 8/25/12 0,3 3х1 114
3x1W 9-12VDC 0.3A MR16 12/28/18 0,3 3х1 35
5-7x1W 15-24VDC 0.3A 12/14/14 0,3 5-7х1 80
10W 21-40V 0.3A AR111 21/30 0,3 10 338
12W 21-40V 0.3A AR11 18/30/22 0,3 12 321
3x2W 9-12VDC 0.4A MR16 12/28/18 0,4 3х2 18
3x2W 9-12VDC 0.45A 12/14/14 0,45 3х2 54

Изготовление драйверов для светодиодов своими руками

Используя готовые микросхемы, радиолюбители могут самостоятельно собирать драйверы для светодиодов различной мощности. Для этого необходимо уметь читать электрические схемы и иметь навыки работы с паяльником. Для примера можно рассмотреть несколько вариантов LED-драйверов своими руками для светодиодов.

Схему драйвера для светодиода 3W можно реализовать на основе микросхемы PT4115 китайского производства PowTech. Микросхема может быть применена для питания LED-приборов свыше 1W и включает в себя блоки управления, которые имеют на выходе достаточно мощный транзистор. Драйвер на базе PT4115 обладает высокой эффективностью и имеет минимальное количество компонентов обвязки.

Обзор PT4115 и технические параметры ее компонентов:

  • функция управление яркостью свечения (диммирование);
  • входное напряжение – 6-30В;
  • значение выходного тока – 1,2 А;
  • отклонение стабилизации тока до 5%;
  • предохранение от разрывов нагрузки;
  • наличие выводов для диммирования;
  • эффективность – до 97%.

Микросхема имеет следующие выводы:

  • для выходного переключателя – SW;
  • для сигнального и питающего участка схемы – GND;
  • для регулирования яркости – DIM;
  • входной датчик тока – CSN;
  • напряжение питания – VIN;

Схема драйвера для светодиодов своими руками на базе PT4115

Схемы драйвера для питания LED-приборов рассеивающей мощностью 3 Вт могут быть исполнены в двух вариантах. Первый предполагает наличие источника питания напряжением от 6 до 30В. В другой схеме предусмотрено питание от источника переменного тока напряжением от 12 до 18В. В этом случае в схему введен диодный мост, на выходе которого устанавливается конденсатор. Он способствует сглаживанию колебаний напряжения, емкость его составляет 1000 мкФ.

Для первой и второй схемы особое значение имеет конденсатор (CIN): этот компонент призван уменьшить пульсацию и компенсировать накопленную катушкой индуктивности энергию при закрытии MOP-транзистора. В отсутствие конденсатора вся энергия индуктивности через полупроводниковый диод ДШБ (D) попадет на вывод напряжения питания (VIN) и станет причиной пробоя микросхемы относительно питания.

Полезный совет! Следует обязательно учитывать, что подключение драйвера для светодиодов в отсутствие входного конденсатора не разрешается.

Учитывая количество и то, сколько потребляют светодиоды, рассчитывается индуктивность (L). В схеме светодиодного драйвера следует подбирать индуктивность, величина которой 68-220 мкГн. Об этом свидетельствуют данные технической документации. Можно допустить небольшое увеличение значения L, однако следует учесть, что тогда снизится КПД схемы в целом.

Как только подается напряжение, величина тока при прохождении его через резистор RS (работает как датчик тока) и L будет нулевая. Далее, CS comparator анализирует уровни потенциалов, находящихся до резистора и после него – в результате появляется высокая концентрация на выходе. Ток, идущий в нагрузку, нарастает до определенного значения, контролируемого RS. Ток увеличивается в зависимости от значения индуктивности и от величины напряжения.

Сборка компонентов драйвера

Компоненты обвязки микросхемы РТ 4115 подбираются с учетом указаний производителя. Для CIN следует применять низкоимпедансный конденсатор (конденсатор с низким ESR), так как применение других аналогов негативно скажется на эффективности драйвера. Если устройство будет запитано от блока со стабилизированным током, на входе понадобится один конденсатор емкостью от 4,7 мкФ. Его рекомендуется разместить рядом с микросхемой. Если ток переменный, потребуется ввести твердотельный танталовый конденсатор, емкость которого не ниже 100 мкФ.

В схему включения для светодиодов 3 Вт необходимо установить катушку индуктивности на 68 мкГн. Она должна располагаться как можно ближе к выводу SW. Можно сделать катушку самостоятельно. Для этого потребуется кольцо из вышедшего из строя компьютера и обмоточный провод (ПЭЛ-0,35). В качестве диода D можно использовать диод FR 103. Его параметры: емкость 15 пФ, время восстановления 150 нс, температура от -65 до 150°С. Он может справиться с импульсами тока до 30 А.

Минимальная величина резистора RS в схеме светодиодного драйвера составляет 0,082 Ом, ток – 1,2 А. Чтобы рассчитать резистор, необходимо использовать значение тока, необходимого для светодиода. Ниже приведена формула для расчета:

RS = 0,1 / I ,

где I – номинальная величина тока LED-источника.

Величина RS в схеме светодиодного драйвера составляет 0,13 Ом, соответственно значение тока – 780 мА. Если такой резистор не удается отыскать, можно использовать несколько низкоомных компонентов, используя при расчете формулу сопротивления для параллельного и последовательного включения.

Компоновка драйвера для светодиода 10 Ватт своими руками

Собрать драйвер для мощного светодиода можно самостоятельно, используя электронные платы от вышедших из строя люминесцентных ламп. Чаще всего в таких светильниках перегорают лампы. Электронная плата остается рабочей, что позволяет использовать ее компоненты для самодельных блоков питания, драйверов и других устройств. Для работы могут понадобиться транзисторы, конденсаторы, диоды, катушки индуктивности (дроссели).

Неисправную лампу необходимо аккуратно разобрать с помощью отвертки. Чтобы сделать драйвер для светодиода 10 Вт, следует воспользоваться люминесцентной лампой, мощность которой 20 Вт. Это необходимо для того, чтобы дроссель мог с запасом выдержать нагрузку. Для более мощной лампы следует либо подбирать соответствующую плату, либо заменить сам дроссель на аналог с большим сердечником. Для LED-источников с меньшей мощностью можно отрегулировать число витков обмотки.

Далее поверх первичных витков обмотки необходимо сделать 20 витков провода и с помощью паяльника соединить эту обмотку с выпрямительным диодным мостом. После этого следует подать напряжение от сети 220В и измерить выходное напряжение на выпрямителе. Его значение составило 9,7В. LED-источник через амперметр потребляет 0,83 А. Номинал этого светодиода 900 мА, однако чтобы заниженное потребление тока позволит увеличить его ресурс. Сборка диодного моста осуществляется путем навесного монтажа.

Новую плату и диодный мост можно разместить в подставке от старого настольного светильника. Таким образом, светодиодный драйвер можно собрать самостоятельно из имеющихся в наличии радиодеталей от вышедших из строя устройств.

В силу того что светодиоды достаточно требовательны к источникам питания, необходимо правильно подбирать к ним драйвер. Если преобразователь выбран правильно, можно быть уверенным, что параметры LED-источников не ухудшатся и светодиоды прослужат положенный им срок.

Наверное, каждый, даже начинающий радиолюбитель знает, что для того чтобы подключить обычный светодиод к источнику питания нужен всего один резистор. А как быть если светодиод мощный? Ватт так на 10. Как быть тогда?
Я вам покажу способ сделать простой драйвер для мощного светодиода всего из двух компонентов.

Для стабилизатора-драйвера нам понадобиться:
1. Резистор – .
2. Микросхема – LM317 – .


LM317 – это микросхема стабилизатор. Отлично подходит для конструирования регулируемых источников питания или драйверов для питания светодиодов, как в нашем случае.

Достоинства LM317

  • Диапазон стабилизации напряжения от 1,7 (включая напряжение светодиода – 3 В) до 37 В. Отличная характеристика, для автомобилистов: яркость не будет плавать на любых оборотах;
  • Выходной ток до 1,5 можно подключать несколько мощных светодиодов;
    Стабилизатор имеет встроенную систему защиты от перегрева и короткого замыкания.
  • Минусовое питание светодиода в схеме включения берется от источника питания, поэтому при креплении к корпусу автомобиля уменьшается количество монтажных проводов, а корпус может играет роль большого теплоотвода для светодиода.

Схема драйвера для мощного светодиода


Я буду подключать светодиод на 3 Ватта.В итоге нам нужно будет рассчитать сопротивление под наш светодиод. Светодиод мощностью 1 Вт потребляет 350 мА, а 3-х ваттный – 700 мА (можно посмотреть в даташит). Микросхема LM317 – имеет опорное напряжение стабилизатора – 1,25 – это число постоянное. Его нужно поделить на ток и получиться сопротивление резистора. То есть: 1,25 / 0,7 = 1,78 Ом. Ток берем в амперах. Выбираем ближайший резистор по сопротивлению, так как резисторов сопротивлением 1,78 не бывает. Берем 1,8 и собираем схему.

Если мощность вашего светодиода превышает 1 Вт, то микросхему необходимо установить на радиатор. Вообще LM317 рассчитана на ток до 1,5.
Питать нашу схему можно напряжение от 3 до 37 вольт. Согласитесь, солидный диапазон питания получается. Но чем больше напряжение, тем больше греется микросхема, учтите это.

Светодиоды продолжают форсировать очередные рубежи в мире искусственного освещения, подтверждая своё превосходство целым рядом преимуществ. Большая заслуга в успешном развитии LED-технологий принадлежит источникам питания. Работая в тандеме, драйвер и светодиод открывают новые горизонты, гарантируя потребителю стабильную яркость и заявленный срок службы.

Что собой представляет светодиодный драйвер, и какая функциональная нагрузка на него возложена? На что обратить внимание при выборе и есть ли альтернатива? Попробуем разобраться.

Что такое драйвер для светодиода и для чего он нужен?

Выражаясь по-научному, LED-драйвером называют электронное устройство, основным выходным параметром которого является стабилизированный ток. Именно ток, а не напряжение. Устройство со стабилизацией напряжения принято именовать «блоком питания» с указанием номинального выходного напряжения. Его используют для запитки светодиодных лент, модулей и LED-линеек. Но речь пойдет не о нём.

Главный электрический параметр драйвера для светодиода – выходной ток, который он может длительно обеспечивать при подключении соответствующей нагрузки. В роли нагрузки выступают отдельные светодиоды или сборки на их основе. Для стабильного свечения необходимо, чтобы через кристалл светодиода протекал ток, указанный в паспортных данных. В свою очередь, напряжение на нём упадёт ровно столько, сколько потребуется p-n переходу при данном значении тока. Точные значения протекающего тока и прямого падения напряжения можно определить из вольта-мперной характеристики (ВАХ) полупроводникового прибора. Питание драйвер получает, как правило, от постоянной сети 12 В или переменной сети 220 В. Его выходное напряжение указывается в виде двух крайних значений, между которыми гарантируется стабильная работа. Как правило, рабочий диапазон может быть от трёх вольт до нескольких десятков вольт. Например, драйвер с U вых =9-12 В, I вых =350 мА, как правило, предназначен для последовательного подключения трёх белых светодиодов мощностью 1 Вт. На каждом элементе упадёт примерно 3,3 В, что в сумме составит 9,9 В, а значит это попадает в указанный диапазон.

К стабилизатору с разбросом напряжений на выходе 9-21 В и током 780 мА можно подключить от трех до шести светодиодов по 3 Вт каждый. Такой драйвер считается более универсальным, но имеет меньший КПД при включении с минимальной нагрузкой.

Немаловажным параметром светодиодного драйвера является мощность, которую он может отдать в нагрузку. Не стоит пытаться выжать из него максимум. Особенно это касается радиолюбителей, которые мастерят последовательно-параллельные цепочки из светодиодов с выравнивающими резисторами, а потом этой самодельной матрицей перегружают выходной транзистор стабилизатора.

Электронная часть драйвера для светодиода зависит от многих факторов:

  • входных и выходных параметров;
  • класса защиты;
  • применяемой элементной базы;
  • производителя.

Современные драйверы для светодиодов изготавливают по принципу ШИМ-преобразования и с помощью специализированных микросхем. Широтно-импульсные преобразователи состоят из импульсного трансформатора и схемы стабилизации тока. Они питаются от сети 220 В, имеют высокий КПД и защиту от короткого замыкания и перегрузки.

Драйверы на базе одной микросхемы более компактны, так как рассчитаны на питание от низковольтного источника постоянного тока. Они также обладают высоким КПД, но их надёжность ниже из-за упрощенной электронной схемы. Такие устройства очень востребованы при светодиодном тюнинге автомобиля. В качестве примера можно назвать ИМС PT4115, о готовом схемотехническом решении на основе этой микросхемы можно прочесть в .

Критерии выбора

Сразу хочется отметить, что резистор – это не альтернатива драйверу для светодиода. Он никогда не защитит от импульсных помех и перепадов в питающей сети. Любое изменение входного напряжения пройдёт через резистор и приведет к скачкообразному изменению тока из-за нелинейности ВАХ светодиода. Драйвер, собранный на базе линейного стабилизатора – тоже не лучший вариант. Низкая эффективность сильно ограничивает его возможности.

Выбирать LED-драйвер нужно только после того, как будет точно известно количество и мощность подключаемых светодиодов.

Помните! Чипы одного типоразмера могут иметь различную мощность потребления ввиду большого количества подделок. Поэтому старайтесь приобретать светодиоды только в проверенных магазинах.

Касаемо технических параметров, то на корпусе LED-драйвера обязательно должно быть указано:

  • мощность;
  • рабочий диапазон входного напряжения;
  • рабочий диапазон выходного напряжения;
  • номинальный стабилизированный ток;
  • степень защиты от влаги и пыли.

Очень привлекательны бескорпусные драйверы с питанием от 12 В и 220 В. Среди них существуют разные модификации, в которых можно подключать как один, так и несколько мощных светодиодов. Такие устройства удобны для проведения лабораторных исследований и экспериментов. Для домашнего использования всё равно придётся поместить изделие в корпус. В итоге денежная экономия на плате драйвера открытого типа достигается в ущерб надежности и эстетики.

Кроме подбора драйвера для светодиода по электрическим параметрам, потенциальный покупатель должен четко представлять условия его будущей эксплуатации (место размещения, температура, влажность). Ведь оттого, где и как будет установлен драйвер, зависит надёжность всей системы.

Читайте так же