Простые схемы регуляторов мощности жала паяльника. Регулятор температуры жала паяльника своими руками! Сборка симисторного регулятора по приведённой схеме пошагово

Все, кто умеет пользоваться паяльником старается бороться с явлением перегрева жала и вследствие этого ухудшения качества пайки. Для борьбы с этим не очень приятным фактом предлагаю вам собрать одну из простых и надежных схем регулятора мощности паяльника своими руками.

Для ее изготовления вам понадобится проволочный переменный резистор типа СП5-30 либо аналогичный и жестяная коробка из-под кофе. Просверлив, по центру дна банки отверстие и устанавливаем там резистор, и осуществляем разводку

Данный и очень простой девайс повысит качество пайки а также сможет защитить жало паяльника от разрушения из-за перегрева.

Гениальное - просто. По сравнению с диодом переменный резистор не проще и ненадежнее. Но паяльник с диодом слабоват, а резистор позволяет работать без перекала и без недокала. Где взять мощный, подходящий по сопротивлению переменный резистор? Проще найти постоянный, а выключатель, применяемый в "классической" схеме, заменить на трехпозиционный

Дежурный и максимальный нагрев паяльника дополнится оптимальным, соответствующим среднему положению переключателя. Нагрев резистора по сравнению с снизится, а надежность работы повысится.

Еще одна очень простая радиолюбительская разработка, но в отличии от первых двух с более высоким КПД

Резисторные и транзисторные регуляторы - неэкономичные. Повысить КПД можно так же, включением диода. При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе.

Напряжение с выпрямительных диодов поступает на параметрический стабилизатор напряжения, состоящий из сопротивления R1, стабилитрона VD5 и емкости С2. Созданное им девяти вольтовое напряжение используется для питания микросхемы счетчика К561ИЕ8.

Кроме того ранее выпрямленное напряжение, через емкость C1 в виде полупериода с частотой 100 Гц, проходит на вход 14 счетчика.

К561ИЕ8 это обычный десятичный счетчик, поэтому, с каждым импульсом на входе CN на выходах будет последовательно устанавливаться логическая единица. Если переключатель схемы переместим, на 10 выход, то с появлением каждого пятого импульса осуществится обнуление счетчика и счет начнется повторно, а на выводе 3 логическая единица установится только на время одного полупериода. Поэтому, транзистор и тиристор будут открываться только через четыре полупериода. Тумблером SA1 можно регулировать количество пропущенных полупериодов и мощность схемы.

Диодный мост используем в схеме такой мощности, чтобы она соответствовала мощности подключенной нагрузки. В качестве нагревательных приборов можно применить таких как электроплитка, ТЭН и т.п.

Схема очень простая, и состоит из двух частей: силовой и управляющей. К первой части относится тиристор VS1, с анода которого идет регулируемое напряжение на паяльник.

Схема управления, реализована на транзисторах VT1 и VT2, управляет работой ранее упомянутого тиристора. Она получает питание через параметрический стабилизатор, собранный на резисторе R5 и стабилитроне VD1. Стабилитрон предназначен для стабилизации и ограничения напряжения, питающего конструкцию. Сопротивление R5 гасит лишнее напряжение, а переменным сопротивлением R2 настраивается выходное напряжение.

В качестве корпуса конструкции, возьмем обычную розетку. Когда будете покупать, то выбирайте, чтобы она была сделана из пластмассы.

Этот регулятор управляет мощностью от ноля до максимума. HL1 (неоновая лампа МН3… МН13 и т.п) – линеаризует управление и одновременно выполняет функцию индикатора индикатором. Конденсатор С1 (емкостью 0,1 мкф)– генерирует пилообразный импульс и реализует функцию защиты цепи управления от помех. Сопротивление R1 (220 кОм) – регулятор мощности. Резистор R2 (1 кОм) – ограничивает ток протекающий через анод - катод VS1 и R1. R3 (300 Ом) – ограничивает ток через неонку HL1 () и управляющий электрод симистора.

Регулятор собран в корпусе от блока питания советского калькулятора. Симистор и потенциометр закреплены на стальном уголке, толщиной 0,5мм. Уголок привинчен к корпусу двумя винтами М2,5 с применением изолирующих шайб. Сопротивления R2, R3 и неонка HL1 помещены в изолирующую трубку (кембрик) и закреплены с помощью навесного монтажа.

T1: BT139 симистор, T2: BC547 транзистор, D1: DB3 динистор, D2 и D3: 1N4007 диод, C1: 47nF/400V, C2:220uF/25 В, R1 и R3: 470K, R2: 2K6, R4: 100R, P1: 2M2, Светодиод 5 мм красный.


Симистор BT139 применяется для регулировки фазы «резистивной» нагрузки нагревательного элемента паяльника. Красный светодиод является визуальным индикатором активности работы конструкции.

Основа схемы МК PIC16F628A, который и осуществляет ШИМ регулирование подводимой к главному инструменту радиолюбителя потребляемой мощности.


Если ваш паяльник большой мощностью от 40 ватт, то при пайке небольших радиоэлементов, особенно smd компонентов трудно подобрать момент времени, когда пайка будет оптимальной. А паять им smd мелочевку просто не возможно. Чтобы не тратить деньги на покупку паяльной станции, особенно если она вам нужна не часто. Предлагаю собрать к вашему главному радиолюбительскому инструменту эту приставку.

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя . Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.


Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.


Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания . Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.


Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.


Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.


Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.


Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

На 12 вольт/8 ватт, но вот цена была несколько необычной, всего 80 рублей против 120, как в прочих торговых точках. Всё собирался сделать что-то подобное сам, а тут случай лишил такой возможности. Продавец заверил, что исправный и даже проверил, подключив к блоку питания. Пришёл домой, стал пробовать его в деле. Стабилизированный ИПБ как раз на его напряжение. Вроде всё нормально, олово плавит, только чуть медленнее обычного. В конце концов, разобрался и почему цена занижена и почему в работе «заторможенный». Оказалось паяльнику для нормальной работы нужно не 12 вольт, а чуть больше. Вспомнил о сыре в мышеловке, хотя конечно здесь немного другой случай. Для полноценной эксплуатации паяльника решил собрать простейший регулятор напряжения и питать его от блока питания на 17 вольт.

Схема регулятора

Схема проста «до неприличия» (из-за чего даже подвергалась жёсткой критике на одном из родственных сайтов) и должна, да нет, просто обязана заработать.

Тем не менее, произвёл предварительную сборку. В течении часа всё было в полном объёме смонтировано на импровизированную монтажную плату. И компоненты и установочные. Сразу появилась возможность для полноценной работы паяльником.

Тестировать собранное устройство, для полного понимания полученного результата, привлёк вольтметр и амперметр. Наблюдение изменения конкретных величин тока и напряжения всегда поможет быть объективным к результату своих стараний.

Видео

Напряжение на выходе до 16 вольт, максимальное токопотребление до 500 мА. В результате проделанных манипуляций пришёл к выводу, что транзистор стоит поставить по-мощнее. Например КТ829А. Мало ли куда удумаю подключить готовый регулятор и что через него запитать. Стабилизированного напряжения на выходе данный регулятор не даёт, замечено некоторое увеличение, хоть и очень медленное. А так как производить пайку планирую по времени непродолжительно, то это не препятствие.

За неделю несколько раз попользовался временной сборкой, работа устроила. Пора придать устройство более-менее «человеческий» вид. Подсобрал комплектующие: корпус, для его устойчивости металлический ролик, держатель паяльника и соединительный винт.

Так как ролик решил использовать ещё и как дополнительный радиатор, то изолировал его от держателя паяльника при помощи пластмассовой шайбы.

После размещения основных компонентов установил на вход и выход гнёзда RGB (напряжение и ток не большие), это позволит избежать установки постоянных проводов (которые всегда вечно путаются). И пользоваться уже готовыми, полностью оборудованными. Со времён видеомагнитофонов их скопилось предостаточно.

Основных компонентов транзистор да два резистора, а проводов всё равно хватает.

Вот, что получилось. Светодиод не случайно подключён на выход регулятора - с изменением выходного напряжения изменяется яркость его свечения, причём весьма значительно. Оборудовать регулятор чем-то вроде шкалы не стал - на корпусе вокруг осталось вполне достаточное количество рисок от прежнего его предназначения. Вот так благодаря схеме, увиденной на форуме сайта, удалось решить вопрос питания низковольтного паяльника с нестандартным напряжением питания. Сборку произвёл Babay iz Barnaula .

Обсудить статью ПОДСТАВКА И РЕГУЛЯТОР МОЩНОСТИ НИЗКОВОЛЬТНОГО ПАЯЛЬНИКА

Температура жала паяльника зависит от многих факторов.

  • Входного напряжения сети, которое не всегда стабильно;
  • Рассеивания тепла в массивных проводах или контактах, на которых производится пайка;
  • Температуры окружающего воздуха.

Для качественной работы требуется поддерживать тепловую мощность паяльника на определенном уровне. В продаже есть большой выбор электроприборов с регулятором температуры, однако стоимость таких устройств достаточно высокая.

Еще более продвинутыми являются паяльные станции. В таких комплексах расположен мощный блок питания, при помощи которого можно контролировать температуру и мощность в широких пределах.

Цена соответствует функциональности.
А что делать, если паяльник уже имеется, и покупать новый с регулятором не хочется? Ответ простой – если вы умеете пользоваться паяльником, сможете изготовить и дополнение к нему.

Регулятор для паяльника своими руками

Эта тема давно освоена радиолюбителями, которые как никто другой заинтересованы в качественном инструменте для паяния. Предлагаем вам несколько популярных решений с электросхемами и порядком сборки.

Двухступенчатый регулятор мощности

Такая схема работает на устройствах с питанием от сети переменного напряжения 220 вольт. В разрыв цепи одного из питающих проводников, параллельно друг другу подключается диод и выключатель. Когда контакты выключателя замкнуты – паяльник запитан в стандартном режиме.

При размыкании – ток проходит через диод. Ели вы знакомы с принципом протекания переменного тока – работа устройства будет понятно. Диод, пропуская ток лишь в одном направлении – отсекает каждый второй полупериод, понижая напряжение вдвое. Соответственно, в два раза снижается мощность паяльника.

В основном, такой режим питания используется при длительных паузах во время работы. Паяльник находится в дежурном режиме, и наконечник не сильно охлаждается. Для приведения температуры к 100% значению, включаем тумблер – и через несколько секунд можно продолжать пайку. При снижении нагрева меньше окисляется медное жало, продлевая срок службы прибора.

Двухрежимная схема на маломощном тиристоре

Данный регулятор напряжения для паяльника подходит к маломощным устройствам, не более 40 Вт. Дли силового управления, используется тиристор КУ101Е (на схеме – VS2). Несмотря на компактные размеры и отсутствие принудительного охлаждения – он практически не греется в любом режиме.

Тиристором управляет схема из переменного резистора R4 (использован обычный СП-04 сопротивлением до 47К) и конденсатора С2 (электролит 22мф).

Принцип работы следующий:

  • Режим ожидания. Резистор R4 выставлен не максимальное сопротивление, тиристор VS2 закрыт. Питание паяльника осуществляется через диод VD4 (КД209), снижая напряжение до 110 вольт;
  • Рабочий режим с регулировкой. В среднем положении резистора R4, тиристор VS2 начинает открываться, частично пропуская через себя ток. Переход в рабочий режим контролируется с помощью индикатора VD6, который зажигается при напряжении на выходе регулятора 150 вольт.

ВАЖНО! Проверка выполняется под нагрузкой, то есть с подключенным паяльником.

При вращении резистора R2 напряжение на входе в паяльник должно плавно изменяться. Схема помещается в корпусе накладной розетки, что делает конструкцию очень удобной.

ВАЖНО! Необходимо надежно изолировать компоненты термоусадочной трубкой, для предотвращения замыкания в корпусе – розетке.

Дно розетки закрывается подходящей крышкой. Идеальный вариант – не просто накладная, а герметичная уличная розетка. В данном случае выбран первый вариант.
Получается своеобразный удлинитель с регулятором мощности. Пользоваться им очень удобно, на паяльнике нет никаких лишних приспособлений, и ручка регулятора всегда под рукой.

Регулятор на микроконтроллере

Если вы считаете себя продвинутым радиолюбителем, можно собрать достойный лучших промышленных образцов, регулятор напряжения с цифровой индикацией. Конструкция представляет собой полноценную паяльную станцию с двумя выходными напряжениями – фиксированным 12 вольт и регулируемым 0-220 вольт.

Низковольтный блок реализован на трансформаторе с выпрямителем, и особой сложности в изготовлении не представляет.

ВАЖНО! При изготовлении блоков питания с разными уровнями напряжения, обязательно установите несовместимые между собой розетки. Иначе можно вывести из строя низковольтный паяльник, по ошибке подключив его к выходу 220 вольт.

Блок управления переменной величиной напряжения выполнен на контроллере PIC16F628A.

Подробности схемы и перечисление элементной базы ни к чему, все видно на схеме. Силовое управление выполнено на симисторе ВТ 136 600. Управление подачей мощности реализовано с помощью кнопок, количество градаций – 10. Уровень мощности от 0 до 9 показывается на индикаторе, который также подключен к контроллеру.

Генератор тактов подает импульсы на контроллер с частотой 4 МГц, это и есть скорость работы программы управления. Поэтому контроллер моментально реагирует на изменение входного напряжения, и стабилизирует выходное.

Схема собирается на монтажной плате, на весу или картонке такое устройство не спаять.

Монтаж двусторонний.

Для удобства станцию можно собрать в корпусе для радиоподелок, или в любом другом, подходящего размера.

В целях безопасности, розетки на 12 и 220 вольт размещаются на разных стенках корпуса. Получилось надежно и безопасно. Такие системы отработаны многими радиолюбителями и доказали свою работоспособность.

Как видно из материала, можно самостоятельно изготовить регулируемый паяльник с любыми возможностями и на любой кошелек.

Основным регулирующим элементом многих схем является тиристор или симистор. Давайте рассмотрим несколько схем построенных на этой элементной базе.

Вариант 1.

Ниже представлена первая схема регулятора, как видите проще наверно уже и некуда. Диодный мост собран на диодах Д226, в диагональ моста включен тиристор КУ202Н со своими цепями управления.

Вот еще одна подобная схема, которую можно встретить в интернете, но на ней мы останавливаться не будем.

Для индикации наличия напряжения можно дополнить регулятор светодиодом, подключение которого показано на следующем рисунке.

Перед диодным мостом по питанию можно врезать выключатель. Если будете применять в качестве выключателя тумблер, проследите, чтобы его контакты могли выдерживать ток нагрузки.

Вариант 2.

Этот регулятор построен на симисторе ВТА 16-600. Отличие от предыдущего варианта в том, что в цепи управляющего электрода симистора стоит неоновая лампа. Если остановите выбор на этом регуляторе, то неонку нужно будет выбрать с невысоким напряжением пробоя, от этого будет зависеть плавность регулировки мощности паяльника. Неоновую лампочку можно выкусить из стартера, применяемого в светильниках ЛДС. Емкость С1 – керамическая на U=400В. Резистором R4 на схеме обозначена нагрузка, которую и будем регулировать.

Проверка работы регулятора осуществлялась с применением обычного настольного светильника, смотри фото ниже.

Если использовать данный регулятор для паяльника мощностью не выше 100 Вт, то симистор не нуждается в установке на радиатор.

Вариант 3.

Эта схема чуть сложнее предыдущих, в ней присутствует элемент логики (счетчик К561ИЕ8), применение которого позволило регулятору иметь 9 фиксированных положений, т.е. 9 ступеней регулирования. Нагрузкой так же управляет тиристор. После диодного моста стоит обычный параметрический стабилизатор, с которого берется питание для микросхемы. Диоды для выпрямительного моста выбирайте такие, чтобы их мощность соответствовала той нагрузке, которую вы будете регулировать.

Схема устройства показана на рисунке ниже:

Спавочный материал по микросхеме К561ИЕ8:

Диаграмма работы микросхемы К561ИЕ8:

Вариант 4.

Ну и последний вариант, который мы сейчас рассмотрим, как самому сделать паяльную станцию с функцией регулирования мощности паяльника.

Схема довольно распространенная, не сложная, многими уже не раз повторяемая, никаких дефицитных деталей, дополнена светодиодом, который показывает, включен или выключен регулятор, и узлом визуального контроля установленной мощности. Выходное напряжение от 130 до 220 вольт.

Так выглядит плата собранного регулятора:

Доработанная печатная плата выглядит вот так:

В качестве индикатора была использована головка М68501, такие раньше стояли в магнитофонах. Головку было решено немного доработать, в правом верхнем углу установили светодиод, он и включение/отключение покажет, и шкалу мал-мал подсветит.

Дело осталось за корпусом. Его было решено сделать из пластика (вспененного полистирола), который применяется для изготовления всякого рода реклам, легко режется, хорошо обрабатывается, склеивается намертво, краска ровно ложится. Вырезаем заготовки, зачищаем края, клеим “космофеном” (клей для пластика).