Rfid протокол. RFID-технология. Все о радиочастотной идентификации. Что такое RFID-метка

Технология RFID (Radio Frequency Identification — радиочастотная идентификация) основанна на использовании радиочастотного электромагнитного излучения. RFID применяется для идентификации и учета объектов.

RFID — технология идентификации, которая предоставляет большие возможности. Наиболее распространенные RFID-метки, как и многие штрих-коды, представляют собой самоклеящиеся этикетки. Но если на штрих-коде информация хранится в графическом виде, то на метку данные заносятся и считываются при помощи радиоволн.

Как это работает

RFID-метка - миниатюрное запоминающее устройство. Она состоит из микрочипа, который хранит информацию, и антенны, с помощью которой метка передает и получает данные. Иногда RFID-метка имеет собственный источник питания (активная), но большинство меток во внешнем питании не нуждаются (пассивная).

В памяти RFID-метки хранится уникальный номер и информация. Когда метка попадает в зону регистрации, эта информация принимается RFID-считывателем.

Для передачи данных пассивные RFID-метки используют энергию поля считывателя. Накопив необходимое количество энергии, метка начинает передачу. Дистанция регистрации пассивных меток 0,05 - 8 метров, в зависимости от типа RFID-считывателя и архитектуры метки.

Где это применяется

Сфера применения RFID постоянно расширяется. Технология востребована в отраслях, где требуется контроль перемещения объектов, интеллектуальные решения автоматизации, способность работать в жестких условиях эксплуатации, безошибочность, скорость и надежность.

На производстве с помощью RFID ведется учет сырья, контролируются технологические операции, обеспечиваются принципы JIT/JISи FIFO. RFID-решения на производстве обеспечивают высокий уровень и стабильность качества продукции.

На складе с помощью RFID в реальном времени отслеживается перемещение товаров, ускоряются процессы приема и отгрузки, повышается надежность и прозрачность операций и снижается влияние человеческого фактора. RFID-решения на складе обеспечивает защиту от воровства и хищений продукции.

В индустрии потребительских товаров и розничных продаж RFID-системы отслеживают товар на этапах поставки, от производителя до прилавка. Товар вовремя выставляется на полку, не залеживается на складе и отправляется в те магазины, где на него высокий спрос.

В библиотеке RFID помогает найти в хранилище и выдать читателю книги, предотвратить хищения. Исчезают очереди на выдаче. Сокращается время подбора и поиска нужного издания, упрощается инвентаризация.

RFID-метки применяются в маркировке шуб и других меховых изделий. Каждое изделие маркируется Контрольным (идентификационным) знаком (КиЗ) со встроенной в него RFID-меткой.

Множество областей бизнеса и повседневной жизни можно улучшить благодаря RFID-технологии. Потенциал применения RFID огромен.

Компоненты RFID-системы

  • RFID-метки — устройства, способные хранить и передавать данные. В памяти меток содержится уникальный идентификационный код. У некоторых RFID-меток память может перезаписываться.
  • RFID-считыватели — приборы, которые читают информацию с меток и записывают в них данные. Подключаются к учетной системе и работают автономно.
  • Учетная система — программное обеспечение, которое накапливает и анализирует полученную с меток информацию и связывает все элементы в единую систему. Современные учетные системы (программы семейства 1С, корпоративные информационные системы — MS Axapta, R3Com) совместимы с RFID-технологией и не требуют специальной доработки.

Преимущества радиочастотной идентификации

  1. Данные RFID-метки перезаписываются и дополняются много раз, тогда как данные на штрих-коде неизменны — они записываются сразу при печати.
  2. RFID-считывателю не требуется прямая видимость метки, чтобы считать ее данные. Взаимная ориентация метки и считывателя не играет роли. Метки читаются через упаковку, что делает возможным скрытое размещение. Для чтения данных метке достаточно попасть в зону регистрации, в том числе при перемещении на высокой скорости. Устройству считывания штрих-кода необходима прямая видимость штрих-кода для чтения.
  3. RFID-метка считывается на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя радиус считывания составляет до нескольких десятков метров.
  4. . RFID-метка может хранить значительно больше информации, чем штрих-код. До 10 000 байт могут храниться на микросхеме площадью в 1 квадратный сантиметр, а штриховые коды вмещают 100 байт (знаков) информации, для воспроизведения которых понадобится площадь размером с лист формата А4.
  5. Промышленные RFID-считыватели одновременно считывают десятки RFID-меток в секунду, используя антиколлизионную функцию. Устройство считывания штрих кода может единовременно сканировать только один штрих-код.
  6. Для автоматического считывания штрихового кода, комитетами по стандартам (в том числе EAN International) разработаны правила размещения штрих-кодов на товарной и транспортной упаковке. К радиочастотным меткам эти требования не относятся. Единственное условие — нахождение метки в зоне действия RFID-считывателя.
  7. RFID-метки обладают повышенной прочностью и сопротивляемостью жестким условиям среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех сферах, где один и тот же объект используется много раз (например, при идентификации паллет или возвратной тары), радиочастотная метка - лучшее средство идентификации, так как не требует размещение на внешней стороне упаковки. Пассивные RFID-метки неограничены сроком эксплуатации.
  8. RFID-метка используется не только как хранитель информации, это интеллектуальное устройство широкого спектра применения с уникальным идентификатором. У штрих-кода нет интеллекта и он просто хранит данные.
  9. Неизменяемое число-идентификатор, присваиваемое метке при производстве, гарантирует защиту меток от подделки. Данные на метке легко шифруются. Как цифровое устройство, радиочастотная метка при необходимости защищается паролем и зашифровывается. В одной метке можно одновременно хранить открытые и закрытые данные.

Что нужно помнить при внедрении RFID

При работе с радиочастотной идентификацией нужно учитывать некоторые ограничения: относительно высокая стоимость, невозможность размещения под металлическими и экранирующими поверхностями, взаимные коллизии.

Относительно высокая стоимость RFID-меток. Цена пассивной RFID-метки начинается с 0,15 доллара (при приобретении свыше 1 000 000 шт.) до 3 долларов (при приобретении 1 шт.). В случае с метками защищенного исполнения (или на металл) эта цена достигает 7 долларов и выше. Таким образом, стоимость RFID-меток выше стоимости этикеток со штриховым кодом. Использование радиочастотных меток целесообразно для защиты дорогих товаров от краж или для сохранности изделий, переданных на гарантийное обслуживание. В логистике и транспортировке грузов стоимость радиочастотной метки незначительна по сравнению со стоимостью содержимого контейнера, поэтому использование радиочастотных меток оправдано на упаковочных ящиках, паллетах и контейнерах.

Возможное экранирование при размещении на металлических поверхностях. RFID-метки подвержены влиянию металла (это касается упаковок определенного вида — металлических контейнеров или упаковки жидких пищевых продуктов, запечатанных фольгой). Это не исключает применение RFID, но приводит к необходимости использования меток, разработанных специально для установки на металлические поверхности или к нестандартным способам закрепления меток на объекте.

RFID - это технология радиочастотной идентификации. Технологии RFID с каждым годом все глубже приникают в нашу повседневную жизнь. Иногда, мы даже не догадываемся, что под штрих кодом ценника джинсов в магазине одежды спрятана RFID метка. Размеры и толщина метки может быть настолько незначительна - что её просто сложно найти невооружённым глазом. Несмотря на скромные размеры, RFID метка (или в английском варианте - rfid tag) умеет очень многое, и позволяет решать большой круг задач в автоматизации торгового зала магазина, склада или промышленного производства. Эта "кроха" может хранить много заданных данных о товаре: уникальны идентификатор самой метки (TID), артикул, вес, цену, дату производства, размер, ячейку хранения и прочую информацию.

В зависимости от: площади (размера) антенны, её контура и типа установленного чипа в метку - информацию с неё можно считать на удалении до 20 метров даже на товаре в упаковке. Функция антиколлизии позволяет считывать метки массово, до 200 штук в одном месте. Это позволяет производить инвентаризацию почти мгновенно или находить нужный товар на складе среди массы не нужного в данный момент.

Помимо этого, радиочастотные транспондеры можно использовать как антикражные метки, что позволяет оптимизировать бюджет торговых залов и вносит новую функцию для складов хранения товара.

  • низкой частоты (LF) - 125 или 134,2 кГц;
  • высокой частоты (HF) - 13,56 МГц
  • ультравысокой частоты (UHF) - 868-956 МГц.

Также, разделяют активные и пассивные RFID метки . Активные метки достаточно дороги и обладают большими габаритами, так как они имеют свой собственный источник питания. Тот же встроенный в активные метки источник питания - ограничивает и срок их службы. Но вместе с этим, они имеют уникальные характеристики по-дальности считывания. Пассивные RFID метки не имеют собственного источника питания, и работают от энергии радиоизлучения считывателя. Цена на пассивные RFID метки - минимальная.

Наибольшее распространение в сфере ритейла, складской и промышленной логистики, системах контроля и управлением доступом (СКУД) получили метки ультравысокой частоты. Их преимущество заключается: в большой дистанции считывания и записи информации - до 17 метров, в возможности одновременного считывания большого количества транспондеров, да и купить RFID метки этого стандарта намного дешевле - так как цена на UHF метки намного ниже, в сравнении метками других частотных диапазонов. Поэтому, когда требуется промаркировать большое количество единиц товара, минимальная стоимость на маркировку товарного фонда будет именно у меток УВЧ диапазона.

Если вы не нашли в этом каталоге нужной вам метки - скорей всего, она есть у нас в наличии, но мы не успели разместить данный товар в нашем интернет-магазине. Пожалуйста, сделайте запрос нужной вам метки по электронной почте или через форму обратной связи.

Из всем полюбившейся (по крайней мере, я на это очень надеюсь) серии «Взгляд изнутри» - больше полугода. Не то, чтобы не было, о чём написать или рассказать, просто одолели дела, которые станут предметом одной из следующих моих статей на Хабре (надеюсь, что её не отправят в утиль, так как посвящена она будет не совсем ИТ-тематике). А пока есть свободная минуточка, давайте разберёмся, что же такое RFID (Radio-frequency identification) – к ним примкнут более простые метки – или как один небольшой шаг в технологиях круто изменил жизнь миллионов и даже миллиардов людей по всему миру.

Предисловие

Сразу хотелось бы оговориться.

Перед началом работы над этой статьёй, я очень надеялся, что по микрофотографиям, а особенно по оптике, информации, найденной на просторах Интернета, и некоторому багажу знаний от прошлых публикаций удастся определить, где и какие элементы микросхемы находятся. Хотя бы на «бытовом» уровне: мол, вот это - память, вот это - схема питания, а вот тут происходит обработка информации. Действительно, казалось бы, RFID – простейшее устройство, самый простейший «компьютер», который только можно придумать…

Однако жизнь внесла свои коррективы и всё, что удалось мне найти: общая схема устройства нового поколения меток , фотографии того, как, например, должна выглядеть память – даже не знаю, почему я не уделил этому внимание в статье про RAM (может быть ещё представится возможность исправиться?!), ну и скандалы-интриги-разоблачения процессоров A5 от chipworks .

Часть теоретическая

По традиции начнём с некоторой вводной части.
RFID
История технологии радиочастотного распознавания – пожалуй, именно так можно назвать все мыслимые и немыслимые варианты RFID (radio-frequency identification) – уходит своими корнями в 40-ые года XX века, когда в СССР, Европе и США активно велись разработки вообще любых видов электронной техники.

В то время, любое изделие, работающее на электричестве, было всё ещё в диковинку, так что перед учёными лежало не паханое поле: куда не ткни, как в Черноземье, черенок от лопаты – вырастет дерево. Судите сами: свои законы Максвелл предложил всего-навсего полвека назад (в 1884 году). А теории на основе этих уравнений стали появляться спустя 2-3 десятилетия (между 1900 и 1914), в том числе и теории радиоволн (от их открытия, до моделей модуляции сигнала и т.д.). Плюс подготовка и ведение второй мировой войны наложили свой отпечаток на данную область.

В результате к концу 40-х годов были разработаны системы распознавания «свой-чужой», которые были несколько побольше, чем описанные в данной статье , но работали фактически по тому же принципу, что и современные RFID-метки.

Первая демонстрация близких к современных RFID была проведена в 1973 году в Исследовательской Лаборатории Лос Аламоса, а один из первых патентов на подобного рода систему идентификации получен спустя десятилетие – в 1983 году. Более подробно с историей RFID можно ознакомиться на Wiki и некоторых других сайтах ( и ).

Активные метки за счёт встроенной батарейки имеют существенно больший радиус работы, габариты, более сложную «начинку» (можно дополнить метку термометром, гигрометром, да хоть целый чип GPS-позиционирования) и соответствующую цену.

Классифицировать метки можно по-разному: по рабочей частоте (LF – низкочастотные ~130КГц, HF – высокочастотные ~14MГц и UHF – ультравысокочастотные ~900МГц), по типу памяти внутри метки (только чтение, однократно записываемая и многократно записываемая). Кстати, так любимый всеми производителями и продвигаемый NFC относится к HF диапазону, который имеет ряд хорошо известных проблем.

Прочие метки
К сожалению, стоимость RFID-меток по сравнению с другими видами идентификации довольно высока, поэтому, например, продукты питания и прочие «ходовые» товары мы по-прежнему покупаем с помощью баркодов (или штрих-кодов), иногда QR-кодов, а защиту от краж обеспечивают так называемые противокражные метки (или EAS – electronic article surveillance)

Самых распространённых три вида (все фото взяты с Wiki):

Впереди нас ждёт много чудных открытий, подчас совершенно неожиданных и конечно же hard geek porn в формате HD !

Если кому-то показалось мало теории, добро пожаловать на данный англоязычный сайт .

Часть практическая

Итак, какие метки удалось найти в окружающем нас мире:


Левый столбец сверху вниз: карта московского метро, проездной аэроэкспресс, пластиковая карта для прохода в здание, RFID-метка, представленная компанией Перекрёсток на выставке РосНаноФорум-2011. Правый столбец сверху вниз: радиочастотная EAS-метка, акустомагнитная EAS-метка, бонусный билет на общественный транспорт Москвы с магнитной полосой, RFID-карта посетителя РосНаноФорума содержит даже две метки.

Первой заявлена карточка московского метрополитена – приступим.

В круге первом. Билет московского метрополитена
Сначала вымачиваем карту в обычной воде, чтобы удалить бумажные слои, скрывающие самое сердце данной «метки».


Раздетая карта московского метрополитена

Теперь аккуратненько посмотрим на неё при небольшом увеличении в оптический микроскоп:


Микрофотографии чипа карты для прохода в московский метрополитен

Чип закреплён довольно основательно и хочу обратить внимание, что все 4 «ноги» присоединены к антенне – это нам пригодится далее для сравнения с другой RFID-меткой. Сложив пластиковую основу пополам в месте, где находится чип, и слегка покачав из стороны в сторону, он легко высвобождается. В итоге имеем чип размером с игольчатое ушко:


Оптические микрофотографии чипа сразу после отделения от антенны

Что ж, поиграемся с фокусом:


Изменение положения фокуса с нижнего слоя на верхний

Теперь немного интриг.

Ходят слухи, что Микрон разрабатывает и производит чипы для московского метро собственного силам по сходной технологии Mifare (как минимум, различается крепление к антенне – ножки другой формы). 22 августа BarsMonster без объявления войны и вероломно направил обращение в Микрон за разъяснениями, можно ли где-то в принципе увидеть данный чип, к 3.11 ответа не поступило. Один из журналистов (а именно, Александр Эрлих) на форуме IXBT тоже собирался уточнить данную информацию у представителей Микрона, но на данный момент воз и ныне там, то есть официальные представители Микрон уклоняются от ответа на прямо поставленный вопрос.

Рассмотренный выше билет, по всей видимости, изготовлен (или только смонтирован на антенну?) на предприятии Микрон (г. Зеленоград) - см. ссылки ниже - по технологии известной в RFID-кругах фирмы NXP, о чём собственно недвусмысленно намекают 3 огромные буквы и год выпуска технологии (а может и год производства) на верхнем слое металлизации чипа. Если полагать, что 2009 относится к году запуска технологии, а аббревиатуру CUL1V2 расшифровать как Circuit ULtralite 1 Version 2 (данное предположение также подтверждается этой новостью), то на сайте NXP можно найти подробное описание данных чипов (последние две строки в списке)

Кстати, в прошлом году для участников Интернет-олимпиады по Нанотехнологиям была организована экскурсия на завод Микрон (фото- и видео отчёты), поэтому говорить, что там оборудование простаивает смысла нет, но и заявление «дядечки в белом халате», что производят они метки по стандартам 70 нм, я бы поставил под сомнение…

Согласно статистике, собранной BarsMonster после анализа чипов 109 билетов метро (довольно репрезентативная выборка), согласно нормальному распределению шансы найти «необычный» билет ~109^1/2 или около 10%, но они тают с каждым вскрытым билетиком…

Внимательный взгляд уже приметил главное отличие двух чипов Mifare – надпись Philips2001. В самом деле, в далёком 1998 году компания Philips купила американского производителя микроэлектроники – Mikron (не путать с нашим, зеленоградским Микроном). А в 2006 году от Philips отпочковалась компания NXP.

Также несложно заметить пометку CLU1V1C, что, исходя из вышеописанного, означает Circuit ULtralite 1 Version 1C. То есть эта метка является предшественницей Mifare, используемой московским метрополитеном, а, следовательно, совместима с ней по основным параметрам. Однако, как и в предыдущем случае 2001 – это указание на год разработки и внедрения технологии или год производства. Странно, что Аэроэкспресс использует устаревшие метки…

В круге третьем. Пластиковая карта
Как-то раз, решил я одной своей знакомой показать статьи и фотографии на Хабрахабре. После чего спросил, а есть ли у неё какая-нибудь ненужная карта для следующей статьи про RFID. Она к тому времени как раз перебралась учиться в EPFL и подарила мне карточку, по которой осуществляется проход в одно из зданий МГУ. Карта, соответственно, без какой-либо маркировки, и я даже не уверен, что на ней записано хоть что-то, кроме обычно ключа для прохода в здание.
Карточка полностью пластиковая, поэтому сразу кладём её в ацетон буквально на пару десятков минут:


Принимаем ацетоновые ванны

Внутри всё довольно стандартно – антенна да чип, правда, он оказался на маленьком кусочке текстолита. К сожалению, без каких-либо опознавательных знаков – типичный китайский noname. Единственное, что можно узнать об этом чипе и карте, что они изготовлены/относятся к некоторому стандарту TK41. Таких карт полно на распродажах типа ali-baba и dealextreme.

В круге четвёртом. Перекрёсток
Далее я хочу рассмотреть две метки, представленные на выставке РосНаноФорум 2011. Первую из них представили с большим пафосом, сказав, что это чуть ли не панацея от воров и краж в магазинах. Да и вообще, данная метка позволит полностью перевести магазины на самообслуживание. К сожалению, эффективный менеджер оказался чуть более, чем полностью некомпетентен в вопросах школьной физики. И после предложение проверить эффективность его и метки с помощью сильного магнита, приложенного к метке, быстро замял тему…

После пары покупок в SmartShop, у меня в распоряжении осталось несколько меток. Очистив одну из них от клея и белого защитного слоя видим следующее:


Новая метка сети магазинов «Перекрёсток»

Поступаем так же как и Mifare аккуратно отсоединяем от полимерной основы и антенны и кладём на столик оптического микроскопа:


Оптические микрофотографии метки, предполагаемой к использованию в SmartShop

По счастливой случайности (то ли клей подкачал, то ли так задумано), метку удалось оторвать от основы быстро, а поверхность её осталась без каких-либо следов клея. Хотелось бы обратить внимание, что если у Mifare все 4 контакта прикреплены к антенне (по 2 контакта на каждый её конец), то здесь мы видим, что два контакта присоединены к двум небольших площадкам, которые не контактирую с антенной.

Немножко поиграем с фокусом в разных частях метки:


Меняем фокусировку…


Максимальное увеличение оптического микроскопа

На последнем фото слева вверху, по всей видимости, запечатлён модуль EEPROM памяти, так как он занимает около трети поверхности чипа и имеет «регулярную» структуру.

По рабочей частоте - по типу памяти

По типу источника питания - по исполнению

В зависимости от используемой рабочей частоты RFID метки делятся на:

Низкочастотные - LF, рабочая частота: 125 - 134 Кгц - ультра высокочастотные - UHF, рабочая частота: 860 - 960 Мгц

Высокочастотные - HF, рабочая частота: 13,56 Мгц - микроволновые - рабочая частота 2,45 Ггц.

Широкий спектр рабочих частот RFID меток обусловлен существенными отличиями распространения электромагнитных волн в различных средах в зависимости от частоты сигнала. Чем выше частота, тем большее расстояние идентификации метки в системе радиочастотной идентификации. Низкочастотные метки хорошо работают на металлических поверхностях, применяются также для идентификации животных, рыб и человека путем вживления транспондеров под кожу. HF метки сравнительно дешевы, хорошо стандартизованы (ISO 14443, ISO 15693), имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. В них используются стандартизованные алгоритмы шифрования. Метки данного диапазона обладают наибольшей дальностью регистрации, в стандартах данного диапазона присутствуют антиколизионные механизмы. UHF транспондеры как правило дешевле чем метки LF и HF. Частотный диапазон UHF открыт для использования в России в так называемом «европейском» диапазоне: 863 - 868 МГЦ.

По типу источника питания RFID-метки делятся на:

  1. пассивные
  2. активные
  3. полупассивные
  1. Пассивные RFID-метки не имеют встроенного источника энергии. Электрический ток, индуцированный в антенне метки электромагнитным сигналом от считывателя, обеспечивает необходимую энергию для функционирования RFID чипа, размещённого в метке, и передачи ответного сигнала. Максимальное расстояние считывания пассивных меток в зависимости от выбранной частоты и размеров антенны варьируется от 10 см (для стандарта ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6).
  2. Активные RFID-метки обладают собственным источником питания и не зависят от энергии считывателя, вследствие чего они читаются на большем расстоянии, чем пассивные, имеют бо льшие размеры и могут быть оснащены дополнительной электроникой. Активные метки обеспечивают более надёжное чтение/запись данных, чем пассивные, благодаря особой сессии связи между транспондером и ридером. Активные RFID метки за счет собственного источника питания генерируют более мощный выходной сигнал по сравнению с пассивными метками. Это позволяет применять эти транспондеры в более агрессивных для радиочастотного сигнала средах: воде (включая людей и животных, которые в основном состоят из воды), металлах (корабельные контейнеры, автомобили), для больших расстояний на воздухе. Большинство активных RFID меток позволяют передавать сигнал на расстояния в сотни метров при жизни батареи питания до 10 лет. Некоторые активные RFID метки имеют встроенные датчики, например, для мониторинга температуры скоропортящихся товаров, влажности, вибрации и т.д. Такие транспондеры способны хранить больший объём информации, но они дороже пассивных, а у их батарей ограничено время работы.
  3. Полупассивные (полуактивные) RFID-метки оснащены собственным источником питания, который запитывает чип только после получения сигнала от считывателя. Таким образом такие метки могут считываться на таких же расстояниях, что и активные.

По типу используемой памяти RFID-метки делятся на:

RO (Read Only ) - данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для чтения. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.

WORM (Write Once Read Many ) - кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.

RW (Read&Write ) - такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

По конструктивному исполнению RFID метки делятся на:

  1. корпусные транспондеры
  2. RFID этикетки (смарт этикетки)
  3. RFID карты (бесконтактные смарт карты)
  4. RFID бирки
  5. другие исполнения (браслеты, брелоки и т.д.)
  1. Транспондеры , у которых RFID чип и RFID антенна помещены в жесткий корпус, называются корпусными RFID метками. Корпус транспондера защищает чип и антенну от механического повреждения, температурного воздействия, влаги, пыли и электростатики. Корпусные RFID метки используются в промышленных RFID системах..
  2. RFID этикетки представляют собой транспондер в виде «Inlay», с лицевой стороной в виде бумаги или синтетической пленки. Смарт этикетки бывают как самоклеящимися, так и с сухой обратной стороной (Dry Inlay). RFID этикетки, как правило, дешевле корпусных транспондеров, но не могут работать в столь жестких условиях как последние. Они являются основой RFID технологий, применяемых в складском учете, торговле, библиотеках и т.д..
  3. RFID карты представляют собой RFID чип и RFID антенну, помещенные в пластиковый корпус в виде карты размером, как правило, 86?54 мм. Бесконтактные смарт карты используются для идентификации личности, транспортного средства и в качестве защищенного носителя информации (спецификации и т.д.).
  4. RFID бирки представляют собой RFID чип и RFID антенну, помещенные в пластиковый корпус в виде пластиковой бирки, используемой для маркировки живых деревьев (см. «Маркировка и учет древесины »).

    Существует много других специализированных конструктивных исполнений

  5. RFID меток в виде различных браслетов, брелоков и т.д., используемых: для идентификации личности в больницах, фитнес-центрах, на горнолыжных курортах, в системах контроля доступа и для решения многих других задач.

RFID (англ. Radio Frequency IDentification, радиочастотная идентификация) — метод автоматической идентификации объектов, в котором посредством радиосигналов считываются или записываются данные, хранящиеся в так называемых транспондерах, или RFID-метках.

RFID — это современная технология идентификации, предоставляющая существенно больше возможностей по сравнению с традиционными системами маркировки.

Любая RFID-система состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег).

Большинство RFID-меток состоит из двух частей. Первая — интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций. Вторая — антенна для приёма и передачи сигнала.

Классификация RFID-меток

Существует несколько показателей классификации RFID-меток и систем:

 По рабочей частоте

 По источнику питания

 По типу памяти

 По исполнению

По типу источника питания RFID-метки делятся на пассивные, полупассивные и активные.

Пассивные RFID-метки не имеют встроенного источника энергии. Электрический ток, индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого CMOS-чипа, размещённого в метке, и передачи ответного сигнала.

Полупассивные RFID-метки , также называемые полуактивными, очень похожи на пассивные метки, но оснащены батарей, которая обеспечивает чип энергопитанием. При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

Активные RFID-метки обладают собственным источником питания и не зависят от энергии считывателя, вследствие чего они читаются на дальнем расстоянии, имеют большие размеры и могут быть оснащены дополнительной электроникой. Однако, такие метки являются наиболее дорогими, а имеет ограниченное время работы батарей.

Активные метки в большинстве случаев обеспечивают большую точность считывания, чем пассивные. Обладая собственным источником питания, активные метки могут генерировать выходной сигал большего уровня, что позволяет применять их в агрессивных средах: в воде, металлах (корабельные контейнеры, автомобили) и на больших расстояниях вне помещения. Активных метки позволяют передавать сигнал на расстояния в сотни метров, а срок службы батареи такой метки может достигать 10 лет. Некоторые RFID-метки имеют встроенные сенсоры, например, для мониторинга температуры скоропортящихся товаров. Другие типы сенсоров в совокупности с активными метками могут применяться для измерения влажности, регистрации толчков/вибрации, света, радиации, температуры и наличия газов в атмосфере.

Радиус считывания для активных меток составляет до 300 м. Они имеют больший объем памяти, чем у пассивных меток и, и способны хранить больший объем информации. В настоящее время активные метки делают размером не больше обычной пилюли и продают по цене в несколько долларов.

По типу используемой памяти RFID-метки классифицируют на следующие типы:

 RO (Read Only) — данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.

 WORM (Write Once Read Many) — кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.

 RW (Read and Write) — такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

По рабочей частоте RFID-метки выделяют следующих диапазонов:

Метки диапазона LF 125-134 кГц

Пассивные системы данного диапазона имеют низкую стоимость и по своим физическим характеристикам используются для вживления подкожных меток животным, людям и рыбам. Имеют существенные ограничения по радиусу действия и точности (коллизии при считывании).

Метки диапазона HF 13.56 МГц

Системы 13МГц являются достаточно дешевыми, не имеют экологических проблем, хорошо стандартизованы и имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта ISO 14443 В разработаны десятки систем, например, система оплаты проезда общественного транспорта в Париже и пригородах.

Распространенность систем данного диапазона показала наличие проблем, связанных с безопасностью. Отмечены случаи взлома таких систем, например, системы оплаты в городском и общественном транспорте в Нидерландах.

Так же, как и в диапазоне LF, в HF-системах, существуют проблемы, связанные со считыванием на больших расстояниях, в условиях высокой влажности, в окружении металла и появление коллизий.

Метки диапазона UHF (860-960 МГц)

Метки диапазона UHF обладают наибольшей дальностью действия. Многими стандартами меток данного диапазона разработаны антиколизионные механизмы. Изначально ориентированные на использование в складской и производственной логистике, UHF-метки не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку еще и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки было легко считать, имея соответствующее оборудование. Позднее разработанные чипы стандарта Gen 2.0 уже имели функции защиты банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Еще позже компания NXP выпустила два новых чипа, которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0, но отличаются от своих предшественников тем, что поле памяти TID (Tag ID), в которое при производстве обычно пишется код типа метки, который в рамках одного артикула не отличается от метки к метке, разбито на две части. Первые 32 бита отведены под код производителя и марку, а вторые 32 бита — под уникальный номер самого чипа. Поле TID — неизменяемое и, таким образом, каждая метка является уникальной. Каждый банк памяти меток может быть защищен от чтения или записи паролем, а EPC-номер может быть записан производителем товара в момент маркировки.

Что касается стоимости, то UHF-метки дешевле, чем их собратья диапазонов LF и HF, но в целом RFID-система UHF дороже за счет стоимости остального оборудования.

В настоящее время частотный диапазон UHF (СВЧ) открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне — 863—868 МГЦ.

О стандартизации

Негативное отношение к технологии RFID усугубляется пробелами, существующими во всех нынешних стандартах. Хотя процесс развития стандартов не закончился, во многих прослеживается тенденция скрывать от общественности часть команд меток. Например, команда «Аутентификация» в технологии Philips MIFARE, использующей стандарт ISO/IEC 14443, после которой метка должна шифровать свои ответы и воспринимать только шифрованные команды, может быть нейтрализована некоторой командой, которую фирма-разработчик держит в секрете.

Настороженное отношение к RFID может быть изменено, если будут разработаны полные и открытые стандарты.

Применение меток диапазона UHF (СВЧ) в Российской Федерации в настоящее время регулируется СанПиН 2.1.8/2.2.4.1383-03, утвержденными Постановлением Главного государственного санитарного врача РФ № 135 от 09.06.2003 г.

Международные стандарты RFID, как составной части технологии автоматической идентификации, разрабатываются и принимаются международной организацией ISO совместно с IEC. Подготовка проектов по разработке стандартов производится в тесном взаимодействии с инициативными заинтересованными организациями и компаниями.

Международные организации-разработчики стандартов

EPCglobal

Объединяет организации GS1 и GS1 US и работает по разработке международных стандартов RFID и EPC, с целью создания международной системы идентификации любого объекта в цепочке поставок по всему миру. EPCglobal объявила своей миссией упорядочение большого количества RFID-протоколов, появившихся в мире начиная с 90-х годов и создании единого протокола RFID для использования коммерческими организациями.

AIM global

AIM Global активно работает над промышленными стандартами с 1972 года. Это международная торговая ассоциация, представляющая поставщиков автоматической идентификации и мобильных технологий. Ассоциация активно поддерживает развитие AIM стандартов за счёт собственного Technical Symbology Committee, Global Standards Advisory Groups и группы экспертов RFID, а также участием в промышленных, национальных (ANSI) и международных (ISO) группах.

В России разработка стандартов в области RFID поручена Ассоциации UNISCAN/GS1 Russia.

Стандарты

ISO 15693 - международный стандарт в области RFID. Описывает принцип передачи информации, временные параметры передачи сигналов в RFID-системах и т. д.

EPC Gen2 (EPCglobal Generation 2)

В 2004 г. ISO/IEC приняла единый международный стандарт ISO 18000, описывающий протоколы обмена (радиоинтерфейсы, air interface) во всех частотных диапазонах RFID от 135 кГц до 2,45 ГГц. Диапазону УВЧ (860—960) МГц соответствует стандарт ISO 18000-6А/В. Чтобы решить технические проблемы, имеющие место при считывании меток классов 0 и 1 первого поколения, в 2004 г. специалисты Hardware Action Group EPCglobal создали новый протокол обмена между считывателем и меткой UHF-диапазона — Class 1 Generation 2. В 2006 г. предложение EPC Gen2 с незначительными изменениями было принято ISO/IEC в качестве дополнения С к существующим вариантам А и В стандарта ISO 18000-6, и на данный момент стандарт ISO/IEC 18000-6C является наиболее распространённым стандартом технологии RFID в UHF-диапазоне.

Метки Gen 2 выпускаются как с записанным производителем номером, так и без него. Записанный производителем товара номер можно заблокировать так же, как и изначально встроенный. Современные метки стандарта Gen 2 используют эффективный антиколлизионный механизм, основанный на развитой технологии «слотов» — многосессионном управлении состоянием меток во время считывания в зоне действия. Данный механизм позволяет увеличить скорость считывания до 1500 меток/сек (запись — до 16 меток/сек). Кроме того, Gen 2 метки позволяют эффективно использовать в перекрывающихся и близких зонах несколько считывателей одновременно (технология Dense Reader Mode) за счет разнесения друг от друга частотных каналов считывателей.