Сопротивление электрическому току. Цветовая маркировка сопротивлений Сопротивление 470 ом

Электрические сети требуют присутствия сопротивления, поэтому в них устанавливаются пассивные элементы в виде резисторов. И когда встает вопрос – маркировка сопротивлений – это напрямую связано с маркировкой резисторов. Ведь определить данный параметр этого элемента, не имея под рукой мультиметр, просто невозможно. Поэтому и были приняты стандарты маркировки. Их две: числовая и цветовая.

Числовая и буквенная

Буквы и числа использовались еще в период Советского Союза. Времена эти канули в лета, а вот советские резисторы остались, их до сих пор используют. Для того чтобы разобраться в марках, приведем несколько примеров.

В первую очередь необходимо разобраться с мощностью. Она обозначается в ваттах и зашифрована в марке элемента. К примеру, МЛТ-1. Это резистор металлопленочный, лакированный и теплоустойчивый с мощностью 1 ватт.

С сопротивлением все немного сложнее. Здесь используется буквенное обозначение латинского алфавита, которое определяет разряд.

  • «R» и «Е» – это измерение в Омах;
  • «К» обозначает килоОмы (кОм);
  • «М» мегаомы (мОм).

К примеру, 47Е или 47R – это резистор с 47 Ом. Или 47К – это сопротивление, равное 47 кОм. Или 1М – это один мегаом. Кстати, необходимо отметить, что цифры и буквы могут располагаться и наоборот, то есть, буквы впереди цифр: К47 – это 47 кОм или 470 Ом. Если величина сопротивления является не целым числом, то цифры, как обычно, разделяются запятой: 4,3К=4,3 кОм. В некоторых марках вместо запятой может стоять буква: 4К3=4,3 кОм.

На фотографии ниже можно увидеть именно последнюю маркировку, равную 1 кОм и обозначаемую как 1К0:

Цветовая

Буквенные и цифровые символы сошли на нет, современная маркировка сопротивления является цветной. А, точнее, состоит она из цветных полосок, которые нанесены по окружности корпуса элемента. Таких полосок может быть от трех до шести.

Именно такое обозначение было создано для того, чтобы легче можно было бы считывать номинальные параметры резистора в независимости от места его установки и положения. Хотя надо сказать о том, что огромное разнообразие цветовой маркировки создает трудности в запоминании цвета оформления. Поэтому в интернете есть много онлайн калькуляторов, с помощью которых можно легко определить характеристики резисторов. В них надо просто вставлять цвета, обозначенные полосками. В результате калькулятор выдаст параметр элемента.

Цветовая маркировка делится по количеству полосок:

  • три полосы – это обозначение с точностью 20%;
  • четыре – это точность в 5% или 10%;
  • пять – это точность 0,005%.

Резистор с шестью полосками – это элемент, в маркировку которого добавляется ТКС (температурный коэффициент сопротивления). Давайте рассмотрим каждую позицию по отдельности.

Три полосы

Что обозначает эта цветовая маркировка:

  • две первые цветные полосы – это числовое обозначение;
  • третья – это количество нулей.

Четыре

Здесь все то же самое. Единственное отличие – это четвертая полоса, которая может быть или золотой, или серебряной. Она обозначает точность, которая соответствует золото – 5%, серебро – 10%.

Приведем пример на основе рисунка, расположенного ниже:

Здесь первый цвет красный, что соответствует цифре «2». Второй фиолетовый – это «7». Третий желтый – это «4». Последняя цветовая маркировка – золотая (точность 5%). В результате получается, что резистор с такой маркировкой имеет сопротивление 270000 Ом или 270 кОм.

Пятиполосное обозначение

Данная цветовая маркировка определяет сопротивление в числовом эквиваленте тремя первыми полосками. Четвертая – это количество нулей за трехзначным числом. Пятая – это точность.

Еще один пример на основе рисунка:

Синий – 6, красный – 2, зеленый – 5, коричневый – 10, золотой – 5%. То есть, этот прибор имеет сопротивление – 6250 Ом или 6,25 кОм.

Шестиполосное обозначение

Здесь все точно так же, как и в предыдущем случае, только добавляется шестая полоса, обозначающая температурный коэффициент сопротивления. Он определяет, как может измениться сопротивление (в миллионных долях), если меняется температурный режим эксплуатации на один градус. Его единица измерения – ppm/ºC. Кстати, аббревиатура «ppm» расшифровывается как «part per million», что в переводе означает «часть на миллион».

Обозначение резисторов меньше 10 Ом

Цветовая маркировка элементов, у которых сопротивление меньше 10 Ом, требует дополнительной информации, заключенной в добавочных цветных оформлениях. Все дело в том, что стандартное количество полос и их цвета не могут точно описать номинал меньше десяти ом.

Поэтому к ним добавляется третья полоса, имеющая два цвета – это золотой и серебряный. Первый соответствует числу 0,1, второй числу 0,01. Остальные полосы обозначаются как обычно. Для примера вернемся к соответствующему разделу, где разбирался пример с рисунком в четыре цвета. В нем обозначено: красный – 2, фиолетовый 7, третья полоса, к примеру, будет золотой. Значит, сопротивление резистора будет:

27*0,1=2,7 Ом.

Еще раз напомним, что в цветовую маркировку входит точность показателя сопротивления. Как уже было сказано выше, обозначается она или золотой, или серебряной полосой. Они используются чаще всего. Но есть еще два цвета: красный – 2% и коричневый – 1%.

Прежде всего, определимся с понятием и обозначением сопротивления, как электрической величины. Согласно теории сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока. В международной системе единиц (СИ) единицей измерения сопротивления является Ом (Ω). Для электротехники это относительно небольшая величина, поэтому мы чаще будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого нужно усвоить следующую табличку:

1 кОм = 1000 Ом;
1 Мом = 1000 кОм;

И наоборот:

1 Ом = 0.001 кОм;
1 кОм = 0.001 Мом;

Ничего сложного, но знать это надо твердо.

Теперь о номиналах (величинах). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми номиналами. Изготовление высокоточных резисторов – дело трудоемкое и используются такие резисторы лишь в специальной высокоточной аппаратуре. Вы, к примеру, не найдете в обычном магазине резистора на 1.9 кОм и в такой точности чаще всего нет необходимости – она нужна редко, а если нужна, то для этого существуют подстроечные резисторы.

Весь стандартный ряд, с которым мы будем сталкиваться, я здесь приводить не буду – он достаточно длинный и учить его специально не стоит. Лучше научимся отличать один резистор от другого. Маркировать приборы могут по-разному. Самая удобная, по моему мнению, была цифровая маркировка. Делалась она, к примеру, на самых ходовых в свое время резисторах типа МЛТ.

Одного взгляда на резистор было достаточно, чтобы узнать какое у него сопротивление

К примеру, на втором сверху резисторе читаем 2,2 и ниже К5% . Номинал этого резистора – 2.2 килоома с точностью 5%. Для мегаомных резисторов используется «М» вместо «К» а омы обозначаются буквами «R», «Е» или вообще без буквы:

470 — 470 Ом
18Е — 18 Ом

Очень часто любая из букв может стоять вместо запятой:

2к2 – 2,2 килоома
М15 – 0,15 мегаом или 150 килоом

Вот и вся хитрость. Еще один параметр – мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (сгорания). Снова вернемся к верхнему рисунку. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0.5 Вт, 0.25 Вт, 0.125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0.5. Остальные на глаз. Конечно, выпускаются (но большинство, увы, выпускалось) и другие типы (и мощности) с «человеческой» маркировкой, перечислять я их не буду, а принцип обозначения у них тот же.

ПЭВР-30, к примеру, выглядит как приличных размеров цилиндр, но маркируется так же

Но эта мода уже практически отошла, взамен цифр появились цветные полоски и специальные коды и с этим придется мириться.

Что это за резистор и каков его номинал? Для этого придется обратиться к специальным таблицам, которые я здесь и привожу.

И как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление .

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению , номинальной мощности и допуску . Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в омах (Ом ), килоомах (кОм ) и мегаомах (МОм ):

1кОм = 1000 Ом ;
1МОм = 1000 кОм = 1000000 Ом .

Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:

1,0 ; 1,1 ; 1,2 ; 1,5 ; 2,0 ; 2,2 ; 2,7 ; 3,0 ; 3,3 ; 3,9 ; 4,3 ; 4,7 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1

Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10 .

Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой , цифровой или цветовой маркировки .

Буквенно-цифровая маркировка .

При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е » и «R », единицу килоом буквой «К », а единицу мегаом буквой «М ».

а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е » и «R ». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω »:

3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом

б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К ». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R » на конце, или только одно числовое значение величины без буквы:

К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом

в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К »:

2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм

г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М ». Букву ставят на месте нуля или запятой:

М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм

д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М »:

— 1 МОм
10М — 10 МОм
33М — 33 МОм

е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е , R , К и М , обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:

R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм

Цветовая маркировка .

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.

Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают в Омах, третье кольцо является множителем , а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.

Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.

Например. Резистор маркирован четырьмя кольцами:

красное — (2 )
фиолетовое — (7 )
красное — (100 )
серебристое — (10% )
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10% .

Резистор маркирован пятью кольцами:

красное — (2 )
фиолетовое (7 )
красное (2 )
красное (100 )
золотистое (5% )
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%

Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета .

И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в статье.

Цифровая маркировка .

Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.

При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель . Множителем является число 10 возведенное в степень третьей цифры:

221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом ;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм ;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм ;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 1,2 МОм .

Если последняя цифра ноль , то множитель будет равен единице , так как десять в нулевой степени равно единице:

100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом ;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом ;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом .

При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм ;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм ;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм .

1.2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).

Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода , состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.

1.3. Номинальная мощность рассеивания.

Третьим важным параметром резистора является его мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.

Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения мощности принят ватт (Вт).

Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.

Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку . Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в статье.

Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга - отечественные резисторы чуть больше своих зарубежных собратьев .

Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным . Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные .

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки , нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций . Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника , а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).

Рядом с условным обозначением ставят латинскую букву «R » и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом обозначают в омах , но единицу измерения не ставят:

15 — 15 Ом
680 – 680 Ом
920 — 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R :

1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом

Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к »:

1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм

Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М »:

— 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм

Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью , в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления . Во второй части статьи мы познакомимся с .
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

Расчет номинала резистора по цветовому коду:
укажите количество цветных полос и выберите цвет каждой из них (меню выбора цвета находится под каждой полоской). Результат будет выведен в поле "РЕЗУЛЬТАТ"

Расчет цветового кода для заданного значения сопротивления:
Введите значение в поле "РЕЗУЛЬТАТ" и укажите требуемую точность резистора. Полоски маркировки на изображении резистора будут окрашены соответствующим образом. Количество полос декодер подбирает по следующему принципу: приоритет у 4-полосной маркировки резисторов общего назначения, и только если резисторов общего назначения с таким номиналом не существует, выводится 5-ти полосная маркировка 1% или 0.5% резисторов.

Назначение кнопки "РЕВЕРС":
При нажатии на эту кнопку цветовой код резистора будет перестроен зеркальным образом от исходного. Таким образом можно узнать, возможно ли чтение цветового кода в обратном направлении (справа - налево). Эта функция калькулятора нужна в том случае, когда сложно понять, какая полоска в цветовой маркировке резистора является первой. Обычно первая полоска или толще остальных, или расположена ближе к краю резистора. Но в случаях 5-ти и 6-ти полосной цветовой маркировки прецизионных резисторов может не хватить места, чтобы сместить полоски маркировки к одному краю. А толщина полосок может отличаться весьма незначительно... С 4-полосной маркировкой 5% и 10% резисторов общего назначения все проще: последняя полоска, обозначающая точность - золотистого или серебристого цвета, а эти цвета никак не могут быть у первой полоски.

Назначение кнопки "М+":
Эта кнопка позволит сохранить в памяти текущую цветовую маркировку. Сохраняется до 9 цветовых маркировок резисторов. Кроме того, автоматически сохраняются в память калькулятора все значения, выбранные из колонок примеров цветовой маркировки, из таблицы значений в стандартных рядах, любые значения (правильные и неправильные), введенные в поле "Результат", и только правильные значения, введенные с помощью меню выбора цвета полосок либо кнопок "+" и "-". Функция удобна, когда требуется определить цветовую маркировку нескольких резисторов - всегда можно быстро вернуться к маркировке любого из уже проверенных. Красным цветом в списке обозначаются значения с ошибочной и нестандартной цветовой маркировкой (значение не принадлежит к стандартным рядам, кодированный цветом допуск на резисторе не соответствует допуску стандартного ряда, к которому относится значение и т.д.).

Кнопка "MC": - очистка всей памяти. Для удаления из списка только одной записи покройте оную двойным кликом.

Назначение кнопки "Исправить":
При нажатии на эту кнопку (если в цветовом коде резистора допущена ошибка) будет предложен один из возможных правильных вариантов.

Назначение кнопок "+" и "-" :
При нажатии на них значение в соответствующей полоске изменится на один шаг в большую или меньшую сторону.

Назначение информационное поля (под полем "РЕЗУЛЬТАТ"):
В нем выводятся сообщения, к каким стандартным рядам принадлежит введенное значение (с какими допусками резисторы этого номинала выпускаются промышленностью), а так же сообщения об ошибках. Если значение не является стандартным, то либо вы допустили ошибку, либо производитель резистора не придерживается общепринятого стандарта (что случается).

Примеры цветовой кодировки резисторов:
Слева приведены примеры цветовой маркировки 1%, а справа - 5% резисторов. Кликните по значению в списке, и полоски на изображении резистора будут перекрашены в соответствующие цвета.

Проводники оказывают электрическому току сопротивление, чем больше это сопротивление, тем сила электрического тока через проводник меньше. Сопротивление проводника зависит от материала, из которого он состоит, длины, сечения, температуры. Чем длиннее проводник, тем сопротивление больше, чем короче проводник, тем сопротивление меньше. Чем тоньше проводник, тем сопротивление больше, чем толще проводник, тем сопротивление меньше.

Сопротивление обозначается буквой R , а единица сопротивления – буквами Ом . В практике применяются также единицы электрического сопротивления килоом (кОм ) и мегаом (МОм ).

1 кОм = 1000 Ом

1 Мом = 1000000 Ом

Что бы найти сопротивление проводника в омах, надо напряжение на его концах в вольтах разделить на силу тока в амперах:

Постоянные резисторы

Резистор - это пассивный элемент электрической цепи. Служит для уменьшения силы тока, во время работы резисторы греются, потому что лишняя электрическая энергия преобразуется резисторами в тепло. На электрических принципиальных схемах резисторы отображаются в виде прямоугольника с двумя выводами или в виде ломаной линии (американский стандарт), обозначаются буквой R с порядковым номером (R1, R2, и т. д.). Рядом указывается номинал резистора.

Основным параметром резистора является сопротивление. Сопротивление резистора измеряется в омах, килоомах, мегаомах. Номинальную мощность рассеяния резистора (от 0.05 до 5 Вт) обозначают специальными знаками, помещаемыми внутри символа.

Маркировка резисторов. Согласно ГОСТ 2.702-75 сопротивления от 0 до 999 Ом указывают на схемах числом без единицы измерения (3.3; 47; 220; 750 и т. д.), от 1 до 999 кОм – числом с буквой к (47 к; 330 к; 910 к и т. д.), свыше 1 мегаома – числом с буквой М (1 М; 4.7 М и т. д.).

Согласно ГОСТ 11076 – 69 единицы сопротивления в кодированной системе обозначают буквами Е или R (Ом), К (килоом) и М (мегаом). Так 33 Ом маркируют 33Е, 1 Ом - 1R0, 47 Ом – 47Е, 10 кОм – 10К, 47 кОм – 47К и т. д.

Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражают в долях килоома и мегаома соответственно, причем на месте нуля и запятой ставят соответствующую единицу измерения: 150 Ом=0.15 кОм=К150; 910 Ом=0.91 кОм=К91; 180 кОм=0.18 МОм= М18; 680 кОм=0.68 МОм=М68 и т. д.

Если номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой: 3.3 Ом - 3Е3 или 3R3; 4.7 кОм – 4К7; 3.3 МОм – 3М3 и т. д.

SMD резисторы и подстроечные могут иметь маркировку состоящую из трех цифр, первые две обозначают сопротивление в омах (мантиссу), а третья - количество последующих нулей (показатель степени по основанию 10), также к маркировке для обозначения десятичной точки может добавляться буква R. Примеры:

Маркировка 513 означает 51 x 10 3 = 51000 Ом или 51 кОм

Маркировка R470 означает 0.47 Ом

Еще существует множество маркировок цветными полосками, но общего стандарта производители резисторов на данный момент не придерживаются, поэтому надежнее измерять сопротивление резисторов мультиметром.

Переменные резисторы

Переменные резисторы – это резисторы, сопротивление которых можно изменять. Применяются в качестве регуляторов усиления, громкости, тембра и т. д.

Существует две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования силы тока в цепи, и тогда регулируемый резистор называют реостатом. В другом случае их используют для регулирования напряжения, тогда резистор называют потенциометром.

Подстроечные резисторы

Разновидность переменных резисторов – подстроечные. Узел регулирования таких резисторов приспособлен для управления отверткой.

Соединение резисторов

При последовательном соединении резисторов их сопротивления складываются:

При параллельном соединении, общее сопротивление рассчитывается по формуле:

При параллельном соединении двух одинаковых резисторов, общее сопротивление будет равно половине сопротивления одного из них.

Таким образом можно получать нужные номиналы резисторов из имеющихся.